You are here

Share:

Search Technologies

Showing 1-20 of 130 results found

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a collection of T-cell receptors (TCRs) that specifically target CDKN2A mutations. CDKN2A mutations are present in a myriad of cancers. Therefore, these TCRs may be used for engineering TCR-based therapies with therapeutic potential for a broad cancer patient population.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

The NCI seeks parties interested in research co-development and/or licensing of TCRs targeting the BRAF V600E mutation. These TCRs are HLA-A*0301 restricted. The BRAF V600E mutation is common among cancer patients, giving the TCRs broad therapeutic potential in immunotherapy against multiple cancers.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds whose activity against HIV-1 integrase mutants confer greater resistance than currently approved INSTIs. Preliminary DMPK and ADME studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present technology discloses novel RNA  and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. The National Cancer Institute sees parties interested licensing this technology  or in collaborative research to co-develop RNAi-based nanoparticle therapeutics for cancer and HIV.

PIM-Targeted PROTACs

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a series of PIM Kinase targeting PROTACS.

Peptide Inhibitors for Viral Infections and as Anti-inflammatory Agents

IFN-gamma and IL-10 are cytokine signaling molecules that play fundamental roles in inflammation, cancer growth and autoimmune diseases.  Unfortunately, there are no specific inhibitors of IFN-gamma or IL-10 on the market to date. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop selective IL-10 and IFN-gamma peptide inhibitors.

Analogues of Withanolide E Sensitize Cancer Cells Toward Apoptosis

There is a need to develop compounds that can sensitize cancer cells to apoptosis inducing ligands, such as poly I:C and TRAIL. In collaboration with the University of Arizona, NCI investigators discovered a series of compounds in the withanolide family that synergistically enhance the response of cancer cells to treatment with an apoptosis-inducing ligand. The NCI seeks licensing and/or co-development research collaborations for development of withanolide E analogues for the treatment of cancer.

Method for Targeted Therapeutic Delivery of Proteins into Cells

The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

Topical Antibiotic for Faster Wound Healing

Currently available topical antibiotic formulations effectively eliminate bacteria at a wound site. Eliminating bacteria in the wound also eliminates the molecular signals present in bacterial DNA that stimulate the immune system's wound healing processes. Without these signals, the rate of wound healing is diminished.  The National Cancer Institute Laboratory of Experimental Immunology seeks parties interested in licensing a topical antibiotic formulation to accelerate wound healing.

Pages