You are here

Share:

Search Technologies

Showing 81-100 of 333 results found

Human Synovial Sarcoma Cell Line A2243

The National Cancer Institute (NCI) seeks parties interested in licensing a human synovial sarcoma cell line (A2243). This cell line is an excellent research tool to study synovial sarcoma with a focus on chromosome translocations.

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

NSAIDs that Assist the Treatment of Human Diseases

Researchers at the National Cancer Institute (NCI) developed compounds containing both a non-steroidal anti-inflammatory drug (NSAID) and a nitroxyl (HNO) -releasing agent that have significantly reduced toxicity, allowing their use for extended periods of time without severe side effects.The HNO-releasing moiety contained in this invention may expand the medical utility of NSAIDs. HNO releasing agents possess anticancer activity as well as good antioxidant properties, which has potential benefit for a variety of human diseases, including acute and chronic inflammation. NCI seeks parties to license or co-develop this technology.

Scytovirin Domain 1 Related Polypeptides

Researchers at the NCI seek licensing for novel anti-HIV peptide therapeutics. The researchers developed novel proteins for HIV inhibition. Scytovirin is a potent anti-HIV protein with two domains having strong symmetry. NCI researchers produced a much smaller, functional, scytovirin domain polypeptide – SD1 – for use as a HIV therapeutic.

A Triple Combination HIV Microbicide

Three anti-HIV proteins- the antiviral lectin cyanovirin, the antiviral lectin griffithsin, and the monoclonal antibody 2G12- have been successfully expressed in the same rice seed. The co-expression allows for a low cost, stable production method for a triple anti-HIV microbicide for the prevention of HIV. The National Cancer Institute (NCI) seeks licensees for the invention microbicide and production method.

Enhanced Cancer Chemotherapy Using the Bioactive Peptide Recifin And Its Analogues

Scientists at the National Cancer Institute (NCI) discovered that the cyclic peptide recifin inhibits the activity of tyrosyl-DNA phosphodiesterase 1 (TDP1), a molecular target for the sensitization of cancer cells to the topoisomerase 1 (TOP1) inhibitor camptothecin and its chemotherapeutic derivatives – such as topotecan and irinotecan. NCI seeks research co-development partners and/or licensees for the development of recifin and its analogues as new chemosensitizing agents in adjunct therapies to enhance the sensitivity of cancer cells to topotecan, irinotecan and related chemotherapeutic agents.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including radio-ligand bio-distribution studies, cell binding studies, immune cell labeling techniques, and α-based therapies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for customer testing and scale-up. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 99% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

Schweinfurthins and Uses Thereof

Researchers at the National Cancer Institute (NCI) developed novel analogs of the natural product schweinfurthins to treat neurofibromatosis type 1 (NF1). The compounds demonstrate effective growth inhibition in malignant peripheral nerve sheath tumor cell lines and mouse models of astrocytomas. Researchers seek licensing and/or co-development research collaboration opportunities to further develop the schweinfurthin analogs.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Single Domain Antibodies Targeting the S2 Subunit of SARS-CoV-2 Spike Protein

Scientists at the National Cancer Institute (NCI) isolated a panel of single domain antibodies (known as ‘nanobodies’), targeting the S2 subunit of the spike protein of SARS-CoV-2 virus. These nanobodies bind to a highly conserved region in the S2 subunit of the spike protein, suggesting the potential to treat current and future SARS-CoV infections. The NCI seeks parties interested in collaborative research and/or licensing to further develop these nanobodies as a possible treatment of COVID-19 infections.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

Chimeric Antigen Receptors to CD276 for Treating Cancer

This licensing opportunity from the National Cancer Institute concerns the development of CARs comprising an antigen-binding fragment derived from the MGA271 antibody. The resulting CARs can be used in adoptive cell therapy treatment for neuroblastoma and other tumors that express CD276.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Pages