You are here

Share:

Search Technologies

Showing 1-20 of 313 results found

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Scientists at the National Cancer Institute (NCI) seek licensees or co-development partners for a multispectral detection method capable of discriminating different Molecular NanoTag components. The capacity to discriminate further increases the sensitivity of detection for NanoTag molecules. Adaptations of this technology could also apply to incorporate spectral scatter detection in other cytometric and microfluidic systems.

Molecular Nanotags for Detection of Single Molecules

Researchers at the National Cancer Institute (NCI) developed novel molecular nanotags for single biological nanoparticle detection, resolution, and sorting, by flow cytometry. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations to further advance this technology with extremely broad biomedical, biodefense, industrial, environmental, and other applications.

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Researchers at the National Cancer Institute (NCI) developed a novel biophysical technique to purify extracellular vesicles (EVs) from contaminants such as proteins and unbound labels. The NCI seeks licensees and/or co-development research collaborations to further advance this technology for EV-based biomarkers and therapeutics to treat a wide range of diseases.

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Researchers at the National Cancer Institute (NCI) developed improved monospecific and bicistronic chimeric antigen receptors (CARs) targeting CD19 and CD20. Importantly, CD19 and CD20 are highly expressed in diffuse large B-cell lymphoma, acute lymphoblastic leukemia and other B-cell lymphomas. These improved CARs can be useful in treating these diseases. NCI is seeking parties interested in the co-development or licensing of this invention for immunotherapy.

Cyclic Peptides as Non-Hormonal Male Contraceptive Agents and Methods of Use Thereof

The National Institute of Child Health and Human Development (NICHD) seeks licensees and/or research co-development partners for the development of cyclic peptides or peptidomimetic molecules as potential non-hormonal contraceptives for males. The cyclic peptides disrupt spermatogenesis by inhibiting the phosphorylation of GRTH/DDX25 (gonadotropin-regulated testicular helicase).

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

Researchers at the National Cancer Institute (NCI) developed a novel mouse for the detection of TGF-ß signaling. This mouse provides the opportunity to study TGF-ß signaling in vivo and may be a useful model for preclinical pharmacology studies. The NCI seeks licensees for the TGF-ß reporter mouse.

Synthetic Lethality-mediated Precision Oncology via the Tumor Transcriptome

Scientists at the National Cancer Institute (NCI) have developed SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a computational precision-oncology framework harnessing genetic interactions to improve treatment options for cancer patients. NCI seeks collaborators or licensees to advance the development of this technology into precision diagnostics.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.

Enhanced Cancer Chemotherapy Using the Bioactive Peptide Recifin And Its Analogues

Scientists at the National Cancer Institute (NCI) discovered that the cyclic peptide recifin inhibits the activity of tyrosyl-DNA phosphodiesterase 1 (TDP1), a molecular target for the sensitization of cancer cells to the topoisomerase 1 (TOP1) inhibitor camptothecin and its chemotherapeutic derivatives – such as topotecan and irinotecan. NCI seeks research co-development partners and/or licensees for the development of recifin and its analogues as new chemosensitizing agents in adjunct therapies to enhance the sensitivity of cancer cells to topotecan, irinotecan and related chemotherapeutic agents.

HIV-1 IN Mutant in a Single Round Vector

The National Cancer Institute (NCI) seeks potential non-exclusive licensees for a collection of mutated single-round vectors for testing of potential Integrase Strand Transfer Inhibitor (INSTI) and reverse transcriptase (RT) inhibitor drugs.

LZK-Targeting ATP-Competitive Catalytic Inhibitors Suppress LZK Catalytic Activity, Inhibit MYC Expression, Inhibit AKT Activation, and Promote Cancer Cell Death and Tumor Regression

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for Leucine Zipper-bearing Kinase (LZK)-targeting ATP-competitive catalytic inhibitors and LZK-targeting proteolysis-targeting chimeras (PROTACs) as a therapeutic for treating cancers that over-express LZK , such as head and neck, lung and ovarian squamous cell carcinoma, as well as small cell lung cancers.

AT-3 Mouse Breast Tumor Cell Line

The National Cancer Institute (NCI) seeks licensees for the AT-3 mouse breast tumor cell line derived from an autochthonous tumor model.

Pages