You are here

Share:

Search Technologies

Showing 1-20 of 28 results found

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Researchers at the National Cancer Institute (NCI) have developed a gene-expression profiling-based molecular diagnostic assay to diagnose and classify primary mediastinal large B cell lymphoma (PMBCL) from diffuse large B cell lymphoma (DLBCL). The diagnosis can be done using routinely available formalin-fixed, paraffin-embedded (FFPE) biopsies. The NCI seeks licensees and/or co-development partners to commercialize this technology.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Researchers at the National Cancer Institute (NCI) identified a biomarker signature of viral infection that correlates with hepatocellular carcinoma (HCC) incidence in at-risk individuals. It has been validated in a longitudinal cohort to detect HCC with high sensitivity and specificity up to 7 years prior to clinical diagnosis. This viral exposure signature can be easily implemented into diagnostic assays for screening of HCC and is available for licensing and/or co-development opportunities.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Non-Invasive In Vivo MRI Method to Image Salient Features of Axons and Nerves

Scientists from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a novel diffusion Magnetic Resonance Imaging (MRI) experimental and modeling framework to measure new and useful microanatomical features of white matter (and gray matter), which are closely related to the function of the central nervous system (CNS) or peripheral nervous system (PNS). This invention is available for licensing or co-development partners.

Quantitative In Vivo Methods for Measuring Brain Networks

Researchers at the NICHD seek licensing and/or co-development research collaborations for a Magnetic Resonance Imaging (MRI) method to quantitatively measure in vivo the estimated conduction time of nerve impulses in the brain.

MADCO-Accelerated Multidimensional Diffusion MRI

The marginal distribution constrained optimization (MADCO) methodology is disclosed wherein a 2D (or higher-dimensional) spectrum is estimated from initial 1D marginal distribution data. These 1D marginal distributions are used as constraints in the reconstruction of the 2D spectra. MADCO accelerates and improves the reconstruction of multidimensional NMR relaxation/diffusion spectra, making it suitable for MRI applications on a voxel-by-voxel basis by vastly reducing the amount of data acquired and data necessary for creating MRI images.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Researchers at the NICHD developed a method for non-invasively determining the distribution of pore lengths and radii within a matrix thereby characterizing cognitive defects observed in patients with Traumatic Brain Injury (TBI). The NICHD seeks licensing and/or co-development research collaborations to bring this invention to the public.

A Rabbit Anti-pT1989 ATR Monoclonal Antibody for Use in Immunoassays

Researchers at the National Cancer Institute (NCI) have developed a monoclonal antibody against ataxia telangiectasia-mutated and Rad3-related (ATR) kinase phosphorylated at threonine 1989. The antibody can be used for pharmacodynamic assays to quantify drug action on the ATR target.

Prognostic Biomarkers for Patients with Early Stage Lung Cancer

Investigators at the National Cancer Institute discovered a set of biomarkers that can identify patients with early stage lung cancer who are at a high risk of relapse. These prognostic methods can guide physicians to select appropriate treatment and follow-up while sparing other patients of unnecessary treatment and negative side-effects of chemotherapy. The NCI seeks parties to license or co-develop the invention.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.

Near-IR Light-Cleavable Antibody Conjugates and Conjugate Precursors

Researchers at the National Cancer Institute (NCI) developed novel groups of cyanine (Cy) based antibody-drug conjugate (ADC) chemical linkers that undergo photolytic cleavage upon irradiation with near-IR light. By using the fluorescent properties of the Cy linker to monitor localization of the ADC, and subsequent near-IR irradiation of cancerous tissue, drug release could be confined to the tumor microenvironment.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Researchers in the National Cancer Institute’s Laboratory of Pathology have developed an improved tissue fixative solution that is formaldehyde-free. This novel fixative, BE70, significantly improves DNA, RNA, and protein biomolecule integrity in histological samples compared to traditional fixatives. Additionally, BE70 is compatible with current protocols and does not alter tissue processing. NCI seeks partners to license this technology.

Assays for Measuring and Quantifying DNA Damage

The National Cancer Institute seeks partners interested in licensing or co-development of assays for determining the levels of gamma-H2AX/H2AX to measure and quantify DNA damage.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Pages