The National Institute on Aging (NIA) seeks licensing and/or co-development research collaboration partners for the further development of islet amyloid polypeptide (IAPP) diagnostic biomarkers and peptidyl therapeutics for amyloid related diseases, including Diabetes and Alzheimer’s disease.
The National Cancer Institute (NCI) seeks licensees and/or collaborators for a T-cell receptor (TCR) that specifically targets CD22 in the context of Human Leukocyte Antigen (HLA)-A*02:01 in B-lymphoid malignancies such as non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia. The TCR is being developed as a cellular immunotherapy for the treatment of lymphomas and leukemias.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for Single Domain Antibodies targeting HPV E6/E7 Oncogenic Peptide/MHC complexes
The National Cancer Institute (NCI) seeks research co-development partners for a companion diagnostic (CDx) that detects human leukocyte antigen (HLA) loss-of-heterozygosity (LOH) and other biomarkers to predict efficacy of TCR-T cell adoptive transfer, immune checkpoint inhibition (ICI), tumor infiltrating lymphocytes (TIL), and other TCR-mediated immunotherapies.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development of an anti-deacetylated poly-N-acetyl glucosamine (dPNAG) antibody for use as an antimicrobial agent.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development of methods that employ the knockout of FGF1 Intracellular Binding Protein (FIBP) to overcome tumor microenvironment suppression against T-cell mediated immunotherapies.
The National Cancer Institute (NCI) seeks research co-development partners for a companion diagnostic (CDx) that detects human leukocyte antigen (HLA) loss-of-heterozygosity (LOH) and other biomarkers to predict efficacy of TCR-T cell adoptive transfer, immune checkpoint inhibition (ICI), tumor infiltrating lymphocytes (TIL), and other TCR-mediated immunotherapies.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for an anti-cancer combination therapy that includes administering a Toll-like receptor (TLR) 4 agonist, a TLR2/6 agonist, an immune checkpoint inhibitor, and a STING agonist for the treatment of resistant solid cancers.
Chimeric antigen receptor (CAR) T cells that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for patients with neuroblastoma and other GPC2-expressing cancers. The inventors at the National Cancer Institute (NCI) have developed a potent anti-GPC2 (CT3) CAR containing CD28 hinge and transmembrane domains (CT3.28H.BBζ) that is available for licensing and co-development.
The National Cancer Institute (NCI) seeks licensees for a mouse model of CD4+ T cell deficiency. The mice carry alleles with germline and conditional deletions of the Zbtb7b gene encoding the zinc finger transcription factor ThPOK or cKrox, essential for the development and function of CD4+ T cells.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a collection of T-cell receptors (TCRs) that specifically target CDKN2A mutations. CDKN2A mutations are present in a myriad of cancers. Therefore, these TCRs may be used for engineering TCR-based therapies with therapeutic potential for a broad cancer patient population.
The NCI seeks parties interested in research co-development and/or licensing of TCRs targeting the BRAF V600E mutation. These TCRs are HLA-A*0301 restricted. The BRAF V600E mutation is common among cancer patients, giving the TCRs broad therapeutic potential in immunotherapy against multiple cancers.
The development of a vaccine against human immunodeficiency virus (HIV) would be expected to provide long-lasting protection. Researchers at the National Cancer Institute (NCI) developed a high efficacy vaccine and microbicide combination for use in an improved HIV vaccine regimen.
The National Cancer Institute (NCI) seeks licensees for a library of cell lines stably expressing common tumor-specific antigens and human leukocyte antigens (HLAs) that can be used to identify, isolate, and expand tumor-reactive T cells.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a combination immunotherapy approach of neoantigen-specific T cells administered alongside a vaccine targeting the same neoantigen for the treatment of cancer. This approach has been shown to have synergistic effect compared to the vaccine and/or T cell therapy approach alone.
Scientists at the National Cancer Institute (NCI) developed a potent chimeric antigen receptor (CAR) targeting glypican-3 (GPC3). GPC3 is a cell surface proteoglycan preferentially expressed on Hepatocellular Carcinoma (HCC). The specific HN3 nanobody-IgG4H-CD28TM CAR included in this invention was much more potent both in in vitro cell models and in vivo mouse models. The NCI seeks licensing and/or co-development research collaborations for further development of the anti-GPC3 CAR to treat liver cancer.
Researchers at the National Cancer Institute developed a combination immunotherapy using Glypican-3 (GPC3)-targeted chimeric antigen receptor (CAR) T cells and a recombinant IL-7 drug for the treatment of hepatocellular carcinoma (HCC).
The National Institute on Aging (NIA) seeks research licensees and/or co-development partners under a Cooperative Research and Development Agreement (CRADA) to advance preclinical and clinical development of repurposed compounds to treat Alzheimer’s disease.
Impairment of cell motility and membrane trafficking can result in enhanced cell proliferation and survival and increased migration and invasion leading to cancer. Several proteins involved in cell motility and membrane trafficking have been shown to be dysregulated in various cancers. Animal models that facilitate the study of roles of these proteins in vivo are therefore required. The National Cancer Institute (NCI) seeks licensees for Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking