You are here

Share:

Search Technologies

Showing 41-60 of 219 results found

Development and Characterization of the SLC46A3 Knockout Mouse Line

The National Cancer Institute (NCI) seeks licensees for an SLC46A3 knockout mouse line. SLC46A3 is a solute carrier of the Major Facilitator Superfamily (MFS) and is thought to have roles in multiple diseases including nonalcoholic fatty liver disease, liver cancer and obesity.

Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Researchers at the National Cancer Institute (NCI) have developed a bioluminescent MB49-luciferase bladder cancer cell line that can be used in preclinical studies to evaluate anti-cancer agents in bladder cancer. NCI seeks parties to non-exclusively license this research material.

AT-3 Mouse Breast Tumor Cell Line

The National Cancer Institute (NCI) seeks licensees for the AT-3 mouse breast tumor cell line derived from an autochthonous tumor model.

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) developed orthotopic allograft models for pancreatic cancer that utilize cells or tumor fragments implanted into the cancer-free pancreata of recipient immunocompetent mice. NCI seeks licensees to commercialize this invention.

Transformation of Weak or Non-Immunogenic Antigens to Produce an Immune Response and Therapeutic Polypeptides for the Treatment and Prevention of Cancer

Researchers at the National Institute on Aging (NIA) have developed a novel strategy for rendering weakly or non-immunogenic, shared (between self and tumor) antigens immunogenic, or able to produce an immune response. Further, they have created therapeutic polypeptides comprising tumor-associated embryonic antigens and chemoattractant ligands. Cancers targeted by these developments include breast, renal, lung, ovarian, and hematological cancers.

Immunogens for Use in a High Efficacy HIV Vaccine

Prevention and control of human immunodeficiency virus (HIV) infections require a vaccine providing long-lasting protection. The most promising vaccine up to date consists of a regimen of immunization with genetically engineered HIV proteins, including the surface glycoprotein gp120, with a resulting efficacy of ~30%. Recent evidence indicates antibodies produced against variable envelope region 2 (V2) of gp120 in primates are associated with higher levels of protection, while antibodies produced against variable envelope region 1 (V1) have an opposite and interfering effect. Researchers at the National Cancer Institute (NCI) and New York University (NYU) have developed V1-deleted gp120 immunogens using Simian immunodeficiency virus (SIV), and observed an increase in antibodies against V2 in macaques upon immunization. NCI is seeking parties interested in co-developing and/or licensing V1-deleted gp120 immunogens for their use in an improved HIV vaccine.

MADCO-Accelerated Multidimensional Diffusion MRI

The marginal distribution constrained optimization (MADCO) methodology is disclosed wherein a 2D (or higher-dimensional) spectrum is estimated from initial 1D marginal distribution data. These 1D marginal distributions are used as constraints in the reconstruction of the 2D spectra. MADCO accelerates and improves the reconstruction of multidimensional NMR relaxation/diffusion spectra, making it suitable for MRI applications on a voxel-by-voxel basis by vastly reducing the amount of data acquired and data necessary for creating MRI images.

Enhanced Immunogenicity Against HIV-1 Using a DNA-prime Poxvirus Vaccination

Researchers at the National Cancer Institute (NCI) seek research co-development or licenses for a method of stimulating an immune response in a human at risk for infection by, or already infected with, an HIV-1 retrovirus. This method utilizes DNA vaccines to stimulate CD8+ T cell immune responses.

Bile Acids and Other Agents that Modulate the Gut Microbiome for the Treatment of Liver Cancer

Researchers at the National Cancer Institute (NCI) have discovered that primary bile acids and antibiotics are a novel therapeutic for the treatment of liver cancer and liver metastases. NCI is seeking parties interested in licensing and/or co-developing primary bile acids and antibiotics that have been demonstrated in vivo to attract natural killer T (NKT) cells to the liver and inhibit tumor development.

Use of Heterodimeric IL-15 in Adoptive Cell Transfer

Researchers at the National Cancer Institute (NCI) have developed a technology that provides methods of performing adoptive cell transfer (ACT), an immunotherapeutic approach for cancer treatment, by administering a heterodimeric Interleukin 15/Interleukin 15 receptor alpha (IL-15/IL-15Rα) complex (hetlL-15) in the absence of lymphodepletion, thereby eliminating any lymphodepletion-associated detrimental side effects.

Nanoparticle delivery of lung cancer therapeutic

The National Cancer Institute seeks parties interested in licensing an improved treatment for non-small cell lung cancer based on inhalation of nano- and microparticle therapeutics.

Agonistic Human Monoclonal Antibodies against Death Receptor 4 (DR4)

The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.

Pages