You are here

Share:

Search Technologies

Showing 21-40 of 68 results found

NSAIDs that Assist the Treatment of Human Diseases

Researchers at the National Cancer Institute (NCI) developed compounds containing both a non-steroidal anti-inflammatory drug (NSAID) and a nitroxyl (HNO) -releasing agent that have significantly reduced toxicity, allowing their use for extended periods of time without severe side effects.The HNO-releasing moiety contained in this invention may expand the medical utility of NSAIDs. HNO releasing agents possess anticancer activity as well as good antioxidant properties, which has potential benefit for a variety of human diseases, including acute and chronic inflammation. NCI seeks parties to license or co-develop this technology.

Novel Small Molecule Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treatment of Solid Tumors

Scientists at National Cancer Institute (NCI) Center for Cancer Research (CCR) identified selective tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that may be used in combination with topoisomerase 1 (TOP1) inhibitors for synergistic treatment of solid tumors. NCI seeks research co-development partners and/or licensees for commercializing the TDP1 inhibitors as part of an anti-cancer therapy.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Nitric Oxide-Releasing Polysaccharide Materials

Researchers at the National Cancer Institute have developed materials derived from polysaccharides that are capable of releasing nitric oxide into the surrounding environment. These materials could be incorporated into surgical dressings, cotton bandages, cellulose filters and dialysis membranes, or other medical devices

New T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) developed a T Cell receptor that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 epitope that is highly expressed by several common and aggressive epithelial tumor types.

New Heterocyclic Scaffold-Based Inhibitors of the Polo-Box Domain of Polo-like Kinase 1 for the Treatment of Cancer

Researchers at the National Cancer Institute (NCI) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) have developed novel heterocyclic scaffold-based inhibitors of the polo-box domain (PBD) of Polo-like kinase 1 (Plk1). These compounds effectively arrest mitotic progression and cell proliferation in cell-based assays. The National Institutes of Health (NIH) seeks licensing and/or co-development research collaborations to further develop these inhibitors for the treatment of cancer.

Nanobodies Neutralizing Lassa Virus

The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.

MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors

Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Metformin for the Treatment of Age-related Retinal Degeneration

Researchers at the National Eye Institute (NEI) have generated Induced Pluripotent Stem Cells (iPS) from two Late-Onset Reginal (L-ORD) patients with a dominant mutation in CTRP5 protein and two of their unaffected siblings. All iPS cells were differentiated into authenticated Retinal Pigment Epithelium (RPE) cells. The NEI seeks licensing and/or co-development research collaborations for Metformin as an FDA-approved drug to treat Age-related Retinal Degeneration.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

Immunogenic Antigen Selective Cancer Immunotherapy

Researchers at the National Institute on Aging working on cancer immunotherapy and detection report the use of SPANX-B polypeptides in the treatment and identification of cancer. Specific human malignancies targeted for the treatments disclosed include melanoma and lung, colon, renal, ovarian and breast carcinomas. The NIA seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize SPANX-B polypeptides in the treatment and identification of cancer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Human Antibodies Against Middle East Respiratory Syndrome Coronavirus

The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

Pages