Scientists at National Cancer Institute (NCI) Center for Cancer Research (CCR) identified selective tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that may be used in combination with topoisomerase 1 (TOP1) inhibitors for synergistic treatment of solid tumors. NCI seeks research co-development partners and/or licensees for commercializing the TDP1 inhibitors as part of an anti-cancer therapy.
The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development seeks research co-development partners and/or licensees to further develop and commercialize PIKfyve phosphatidyl linositol kinase inhibitors for the treatment of pathogenic coronaviruses.
Scientists at the National Cancer Institute (NCI) discovered that the cyclic peptide recifin inhibits the activity of tyrosyl-DNA phosphodiesterase 1 (TDP1), a molecular target for the sensitization of cancer cells to the topoisomerase 1 (TOP1) inhibitor camptothecin and its chemotherapeutic derivatives – such as topotecan and irinotecan. NCI seeks research co-development partners and/or licensees for the development of recifin and its analogues as new chemosensitizing agents in adjunct therapies to enhance the sensitivity of cancer cells to topotecan, irinotecan and related chemotherapeutic agents.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for an HLA-A*01:01 restricted human T-cell receptor recognizing the NRAS Q61K hotspot mutation for development of T cell immunotherapies against multiple cancers, including melanoma.
The National Cancer Institute (NCI) and the National Institute of Child Health and Human Development (NICHD) seek research co-development partners and/or licensees for an antiviral treatment that can target SARS-Cov-2 replication in Covid-19 patients.
Researchers at the NCI seek licensing and/or co-development research collaborations for an anti-viral polypeptide, Griffithsin, and its antiviral use against Hepatitis C, Severe Acute Respiratory Syndrome (SARS), H5N1, or Ebola.
Researchers at the National Cancer Institute (NCI) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) have developed novel heterocyclic scaffold-based inhibitors of the polo-box domain (PBD) of Polo-like kinase 1 (Plk1). These compounds effectively arrest mitotic progression and cell proliferation in cell-based assays. The National Institutes of Health (NIH) seeks licensing and/or co-development research collaborations to further develop these inhibitors for the treatment of cancer.
The National Cancer Institute (NCI) seeks licensees for a method of high-throughput generation of induced pluripotent stem cells carrying antigen-specific T cell receptors from tumor infiltrated lymphocytes.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a panel of single domain antibodies (nanobodies) that target the spike (S) protein of SARS-CoV-2.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for development of a new chemical entity and monomeric and oligomeric compound embodiments for development as a male contraceptive.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.
Researchers at the National Cancer Institute (NCI) have developed a novel method for identifying neoantigen reactive T cells and T cell receptors (TCRs), isolated from fresh tumors of common epithelial cancers. This highly specific and sensitive method allows rapid determination of the neoantigen reactive TCR sequences and can be very useful to translate this information into TCR-engineered T-cell populations for immunotherapy without the need to grow tumor infiltrating T-cells and expensive, time-consuming screening. The NCI seeks research co-development partners and/or licensees for this invention.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a method to isolate and sequence tumor reactive T Cell Receptors (TCRs) from cancer specific T cells using calcium ion (Ca2+) flux as the marker of TCR ligation and activation.
The National Eye Institute (NEI) seeks research co-development partners and/or licensees for gene therapy for CRX retinopathies such as Leber congenital amaurosis, retinitis pigmentosa, and cone-rod dystrophy.
The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for small molecules that inhibit histone lysine demethylases (KDMs). These compounds may be effective therapeutics for Rhabdomyosarcoma (RMS) and other cancers.
Researchers at the National Cancer Institute (NCI) have isolated seven monoclonal antibodies that bind to the human epidermal growth factor receptor variant III (EGFRvIII) but not wildtype EGFR. The NCI seeks research co-development partners or licensees for monoclonal antibodies that specifically target cancer-expressed EGFR.
Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.
The National Cancer Institute (NCI) seek research co-development or licensees for a method to isolate tumor specific T-cells or T-cell receptors from peripheral blood.