You are here

Share:

Search Technologies

Showing 1-20 of 43 results found

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

A Mobile Health Platform

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a mobile health technology that monitors and predicts a user’s psychological status in order to deliver an automated intervention when needed.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Researchers at the National Institute of Child Health and Human Development (NICHD) developed a device simulating a blast shock wave of the type produced by explosive devices such as bombs. The invention allows for the real-time study of blast effects on in vitro cell models. NICHD researchers seek licensing opportunities to further develop this device.

Video Monitoring and Analysis System for Vivarium Cage Racks

This invention pertains to a system for continuous observation of rodents in home-cage environments with the specific aim to facilitate the quantification of activity levels and behavioral patterns for mice housed in a commercial ventilated cage rack.  The National Cancer Institute’s Radiation Biology Branch seeks partners interested in collaborative research to co-develop a video monitoring system for laboratory animals.

Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy (CP)

Researchers at the National Institutes of Health Clinical Center (NIHCC) and Northern Arizona University (NAU) seek licensing and/or co-development research collaborations for a wearable, pediatric, robotic exoskeleton that facilitates knee extension during walking to provide motorized movement assistance and training through the gait cycle. The Robotic Exoskeleton is specifically designed for therapy of crouch gait in children with cerebral palsy (CP). The design is a customizable human-machine interface that allows an individualized assistance protocol to help preserve and enhance muscle strength and control. Early clinical results from this intervention appear promising for a condition having few effective long-term interventions.

Progressive and Multipath Neural Network for Medical Image Segmentation

Researchers at the National Institutes of Health Clinical Center (NIHCC) developed a technology that improves segmentation detail levels for anatomical structures in medical images through a new, deep learning approach. Difficult anatomical features, often segmented incorrectly with other image segmentation methods, are correctly segmented and identified using this novel technology.

Zirconium-89 PET Imaging Agent for Cancer

This technology is a new generation of rationally designed chelating agents that improve the complexation of Zirconium-89 for PET imaging of cancers.

Clinical Imaging with Acoustic Wave or Photoacoustic Tomosynthesis

Ultrasound-based cancer screening and biopsy imaging technique are a critical clinical need. Ultrasound based biopsy imaging can provide a real-time modality for lower cost that is comparable to, or complimentary to MRI imaging. Researchers at the NIH Clinical Center seek licensing and/or co-development research collaborations for Tissue Characterization with Acoustic Wave Tomosynthesis.

Method and Device for Selectively Labeling RNA

The National Cancer Institute's Structure Biophysics Lab seeks partners interested in licensing or co-developing a technology to site-specifically label RNA.

Pages