You are here

Share:

Search Technologies

Showing 1-20 of 48 results found

RNASEH-Assisted Detection Assay for RNA

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for the development and commercialization of a diagnostic assay that detects sequence-specific (viral) RNA.

Polymer-Cast Inserts for Cell Histology and Microscopy

The National Cancer Institute (NCI) seeks co-development partners and/or licensees for polymer-cast inserts for cell histology and microscopy; a system for high throughput three-dimensional (3D) cell culture and screening microscopy.

Mouse Embryo Culture Chamber and Imaging System and Methods of Use

Scientists at the National Eye Institute (NEI) have developed an embryo culture chamber, which can be used to culture and image embryos. The chamber allows for the continuous imaging of the embryo for the culture period. NEI seeks research collaborations and/or licensees for the development of this culture and imaging chamber for murine embryos.

Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Scientists at The National Cancer Institute (NCI) and The National Institute of Neurological Disorders and Stroke (NINDS) have invented a method of imaging glucose metabolism in vivo using MRI chemical shift imaging (CSI) experiments that relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular value decomposition, tensor decomposition. This new technology is denoising software for MRIs that significantly improves the measurement of low-intensity signals without the need for dynamic nuclear polarization (DNP). The scientists seek research co-development partners and/or licensees for their invention.

Automated Cancer Diagnostic Tool of Detecting, Quantifying and Mapping Mitotically-Active Proliferative Cells in Tumor Tissue Histopathology Whole-Slide Images

The National Cancer Institute (NCI) seeks research, co-development, or licensing partners for software that uses computational approaches in cancer diagnosis. NCI researchers have recently developed a computational approach for detecting, quantifying, and mapping Mitotic Hotspots in whole slide images of tumor tissue. This technology has demonstrated high reproducibility that is unaffected by diagnostic skill or fatigue, allowing standardization of tumor cell proliferation assessment across institutions.

Mitotic Figures Electronic Counting Application for Surgical Pathology

National Cancer Institute (NCI) researchers have developed a novel software tool for uniform recording of Mitotic Figure (MF) counts via conventional and/or digital microscopy. With this technology, diagnostic centers can standardize electronic recording, summation, and transcription of clinical data during surgical pathology examination. NCI seeks licensing partners to further develop this application for use in diagnosis and detection of malignant cancers.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy (CP)

Researchers at the National Institutes of Health Clinical Center (NIHCC) and Northern Arizona University (NAU) seek licensing and/or co-development research collaborations for a wearable, pediatric, robotic exoskeleton that facilitates knee extension during walking to provide motorized movement assistance and training through the gait cycle. The Robotic Exoskeleton is specifically designed for therapy of crouch gait in children with cerebral palsy (CP). The design is a customizable human-machine interface that allows an individualized assistance protocol to help preserve and enhance muscle strength and control. Early clinical results from this intervention appear promising for a condition having few effective long-term interventions.

Device for Growing Mammalian Cells on EM Grids

A device used to hold transmission electron microscopy grids that allows adherent mammalian cells to grow on and the 3D printing software to create the device, which the NCI seeks to license.

Transperineal Ultrasound-Guided Prostate Biopsy

The National Institutes of Health (NIH) Clinical Center (CC) seeks Cooperative Research and Development and/or license agreements for Transperineal Ultrasound-Guided Prostate Biopsy

Device to guide oxygen over cells for photo-oxidation

Device is used to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. Invention includes the 3D printing software to create the device. The device makes it possible to easily provide a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for later visualization in electron microscopy. NCI seeks commercial partners to license this technology.

Pages