You are here

Share:

Search Technologies

Showing 81-100 of 360 results found

Compounds that Interfere with the Androgen Receptor Complex

NCI researchers have identified novel compounds that inhibit FKBP52-mediated activation of the androgen receptor protein (AR), a major target for anti-prostate cancer therapeutic development. As FKBP52 is implicated in the regulation of other hormone receptors, anti-FKBP52 may be applicable in the treatment of hormone-dependent diseases such as diabetes or even used as contraceptives. NCI seeks partners to license or co-develop this technology.

Computer-Aided Diagnostic for Use in Multiparametric MRI for Prostate Cancer

Researchers at the National Institutes for Health Clinical Center (NIHCC) have developed computer-aided diagnostics (CAD) that may further improve the already superior capabilities of multiparametric magnetic resonance imaging (MRI) for detection and imaging of prostate cancer. This system produces an accurate probability map of potential cancerous lesions in multiparametric MRI images that is superior to other systems and may have multiple product applications.

Conserved Elements Vaccine for HIV

Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.

Convolutional Neural Networks for Organ Segmentation

Computer automated segmentation of high variability organs and disease features in medical images is uniquely difficult. The application of deep learning and specialized neural networks may allow for automation of such interpretation tasks that are currently only performed by trained physicians. Computer automation may improve image analysis capabilities and lead to better diagnostics, disease monitoring, and surgical planning for many diseases. To help solve this challenge, researchers at the National Institutes of Health Clinical Center (NIHCC) have developed a technology that trains a computer to read and segment certain highly variable image features.

Convolutional Neural Networks for Organ Segmentation

Computer automated segmentation of high variability organs and disease features in medical images is uniquely difficult. The application of deep learning and specialized neural networks may allow for automation of such interpretation tasks that are currently only performed by trained physicians. Computer automation may improve image analysis capabilities and lead to better diagnostics, disease monitoring, and surgical planning for many diseases. To help solve this challenge, researchers at the National Institutes of Health Clinical Center (NIHCC) have developed a technology that trains a computer to read and segment certain highly variable image features.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Detection of Colorectal Cancer with Two Novel Heme-Related Molecules in Human Feces

Mortality from colorectal cancer (CRC) can be reduced by detecting the cancer or its precursor, colorectal adenoma (CRA), so that it can be removed at an early stage.  Current tests involve screening stool specimens for blood, especially for hemoglobin.  The fecal immunochemical test (FIT) for hemoglobin is positive in stool for only about 60% of early-stage and 85% of advanced CRC cases, with a false-positive rate of less than 10%.  Researchers at the NCI have developed an assay with better accuracy and seek licensing and/or co-development research collaborations for the commercialization of the assay.

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Device for Growing Mammalian Cells on EM Grids

A device used to hold transmission electron microscopy grids that allows adherent mammalian cells to grow on and the 3D printing software to create the device, which the NCI seeks to license.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Researchers at the National Institute of Child Health and Human Development (NICHD) developed a device simulating a blast shock wave of the type produced by explosive devices such as bombs. The invention allows for the real-time study of blast effects on in vitro cell models. NICHD researchers seek licensing opportunities to further develop this device.

Device to guide oxygen over cells for photo-oxidation

Device is used to guide a stream of oxygen or carbon dioxide over a dish of cells during fluorescence microscopy. Invention includes the 3D printing software to create the device. The device makes it possible to easily provide a steady source of oxygen or carbon dioxide to cells while operating a fluorescent microscope to oxidize fluorophores for later visualization in electron microscopy. NCI seeks commercial partners to license this technology.

Devices for Improved Tissue Cryopreservation and Recovery

Researchers at the National Eye Institute (NEI), have developed a cryopreservation and cell recovery system designed specifically for the efficient cryopreservation, transportation and subsequent thawing of monolayers and tissues on a substrate. This closed cryopreservation/defrost system allows for sterility in addition to increased viability, recovery and safety of tissues that can be used for in vitro culture or surgical transplantation.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

Diagnostic Assays for the Detection of Thyroid Cancer

The Eunice Kennedy Shriver National Institute of Child and Human Development’s (NICHD) Pediatric Growth and Nutrition Branch seek partners to co-develop a diagnostic assay to detect thyroid cancer.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Pages