You are here

Share:

Search Technologies

Showing 81-100 of 271 results found

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

Diagnostic Assays for the Detection of Thyroid Cancer

The Eunice Kennedy Shriver National Institute of Child and Human Development’s (NICHD) Pediatric Growth and Nutrition Branch seek partners to co-develop a diagnostic assay to detect thyroid cancer.

Dual-Function Protein ATIA for Diagnostics and Therapeutics of Glioblastoma

Investigators at the NCI discovered an Anti-TNF Induced Apoptosis (ATIA) protein, which protects cells against apoptosis.  ATIA is highly expressed in glioblastoma and astrocytomas and its inhibition results in increased cell sensitivity to TNF-related apoptosis-inducing ligand induced cell death.  The National Cancer Institute seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize glioblastoma diagnostics and therapeutics.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Researchers at the National Cancer Institute (NCI) developed several high-affinity monoclonal antibodies to treat Fibroblast Growth Factor Receptor 4 (FGFR4)-related diseases including rhabdomyosarcoma and cancers of the liver, lung, pancreas, ovary and prostate. These antibodies have been used to generate antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs), which are capable of specifically targeting and killing diseased cells. NCI seeks co-development opportunities or licensees for this technology.

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

Functionally-Interdependent Shape-Switching Nucleic Acid Nanoparticles

Researchers at the National Cancer Institute (NCI) have developed nucleic-acid-based nanoparticle that can be adapted for RNA interference (RNAi), molecular imaging, or a combination thereof. The invention nanoparticles can be used as therapeutics in the treatment of cancer, whichthe NCI seeks parties to license or co-develop.

Gene Signature for Predicting Solid Tumors Patient Prognosis

The National Cancer Institute’s Laboratory of Human Carcinogenesis seeks parties to license or co-develop a method of predicting the prognosis of a patient diagnosed with hepatocellular carcinoma (HCC) or breast cancer by detecting expression of one or more cancer-associated genes, and a method of identifying an agent for use in treating HCC.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Pages