You are here

Share:

Search Technologies

Showing 1-20 of 252 results found

T-cell Receptors Targeting CD20-Positive Lymphomas and Leukemias

The National Cancer Institute (NCI) seeks licensees for a collection of T-cell receptors (TCRs) that specifically target the CD20 antigen expressed in B-lymphoid malignancies such as non-Hodgkin’s lymphoma (NHL), chronic lymphocytic leukemia, and acute lymphoblastic leukemia. The TCRs are being developed as therapeutics for the treatment of lymphomas and leukemias.

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

The National Cancer Institute's Laboratory of Experimental Immunology, Cancer Inflammation Program, seeks parties interested in collaborative research to co-develop, evaluate, or commercialize the use of certain cucurbatacins or withanolides in combination with pro-apoptotic agonists of TRAIL death receptors for cancer therapy.

Nanobodies Neutralizing Lassa Virus

The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

Cancer cells have been found to directly activate resting B cells to form suppressive regulatory B cells (tBregs) and utilize them to evade immune surveillance and mediate metastasis. tBregs directly inhibit CD4+ and CD8+ T cell activity in a cell contact-dependent manner, induce FoxP3+ T cell activity, and promote Treg-dependent metastasis. The National Institute on Aging's Immunotherapeutics Unit, is seeking parties interested in licensing or co-development of regulatory B cells to control autoimmune diseases and strategies that inactivate tBregs to control cancer immune escape. 

Combination of Near Infrared Photoimmunotherapy Targeting Cancer Cells and Host-Immune Activation

Investigators at the National Cancer Institute (NCI) seek co-development partners and/or licensees for a new therapeutic approach that selectively targets cancer cells and prevents tumor regrowth. The novel method combines antibody-IR700 molecules and Near-Infrared Photo Immunotherapy (NIR-PIT), which has shown great potential in targeting tumors via a host immunogenic response, with already known and available anti-cancer immunomodulators to further enhance the antitumor response. The investigators have shown in mouse models that, when used in combination, NIR-PIT-treatment and standard antitumor agents conferred a potent vaccine-like effect, not only curing mice of local and distant cancers but successfully immunizing them against tumor regrowth.

Margaric Acid Decreases PIEZO2 Mediated Pain

Investigators at the National Center for Complimentary and Integrative Health (NCCIH) and the University of Tennessee Health and Science Center have shown that administration of margaric acid can ameliorate pain induced by a variety of noxious stimuli in mice. In vitro and ex vivo studies in human and murine neural cells indicate that the mechanism of action of margaric acid is mediated by PIEZO2 (Piezo-type mechanosensitive ion channel component 2) function. NCCIH seeks research co-development partners and/or licensees for methods of using the fatty acid, margaric acid to treat pain.

Use of Neurotrophic Factor-alpha1/Carboxypeptidase E (CPE) to Treat Alzheimer Disease

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research licensees and /or co-development partners under a Cooperative Research and Development Agreement (CRADA) to advance preclinical and clinical development of methods to treat Alzheimer Disease using Carboxypeptidase E (CPE).

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Pluripotent stem cells are a promising source of T cells for a variety of clinical applications. However, current in vitro methods of T cell differentiation result in the generation of cells with aberrant phenotypes. Researchers at the National Cancer Institute (NCI) have now developed methodology for generating induced pluripotent stem cell thymic emigrants (iTE). Antigen-specific CD8αβ+ iTEs exhibited functional properties in vitro that were almost indistinguishable from natural naïve CD8αβ+ T cells, including vigorous expansion and robust anti-tumor activity. iTEs recapitulated many of the transcriptional programs of naïve T cells in vivo and revealed a striking capacity for engraftment, memory formation, and efficient tumor destruction. The NCI seeks licensing and/or co-development research collaborations for this invention.

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

Pages