You are here

Share:

Search Technologies

Showing 1-20 of 54 results found

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Scientists at the National Cancer Institute (NCI) seek licensees or co-development partners for a multispectral detection method capable of discriminating different Molecular NanoTag components. The capacity to discriminate further increases the sensitivity of detection for NanoTag molecules. Adaptations of this technology could also apply to incorporate spectral scatter detection in other cytometric and microfluidic systems.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Methods For Treating or Preventing Inflammation and Periodontitis

Natural products have long been considered a source of biologically active molecules against health disorders, including bone-loss related diseases. Cinnamolyoxy-mammeisin (CNM), can be isolated from Brazilian geopropolis and demonstrates anti-inflammatory activity. Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the Piracicaba Dental School, University of Campinas, Brazil, have shown CNM also demonstrates inhibition of oral bone loss. This invention is available for licensing and/or co-development opportunities.

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Cancer Therapeutic based on Stimulation of Natural Killer T-cell Anti-tumor Activity

Investigators at the National Cancer Institute''s Vaccine Branch have found that beta-mannosylceramide (Beta-ManCer) promotes immunity in an IFN-gamma independent mechanism and seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize beta-ManCer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  The National Eye Institute seeks parties interested in licensing or collaborative research to co-develop a process for the production of regulatory B-Cells for use in auto-immune indications.

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

The development of a vaccine against human immunodeficiency virus (HIV) would be expected to provide long-lasting protection. Researchers at the National Cancer Institute (NCI) developed a high efficacy vaccine and microbicide combination for use in an improved HIV vaccine regimen.

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Researchers at the National Cancer Institute (NCI) developed improved monospecific and bicistronic chimeric antigen receptors (CARs) targeting CD19 and CD20. Importantly, CD19 and CD20 are highly expressed in diffuse large B-cell lymphoma, acute lymphoblastic leukemia and other B-cell lymphomas. These improved CARs can be useful in treating these diseases. NCI is seeking parties interested in the co-development or licensing of this invention for immunotherapy.

A Murine Model of Inflammation Based on Chronic Expression of Interferon-Gamma

The National Cancer Institute (NCI) has a novel mouse model of autoimmunity based on chronic interferon-gamma expression (ARE-Del). This mouse can be used as an in vivo model to study female-biased autoimmune diseases, including: Systemic Lupus Erythematosus, Primary Biliary Cholangitis, and Ovarian Failure Syndrome.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration

Researchers at the National Eye Institute have developed a new cytokine therapy that delivers functional interleukin 34 (IL-34) to the retina for treating ocular inflammatory diseases – such as uveitis and degenerative retinal diseases. Intraocular delivery of IL-34 protein or IL-34 gene expression system can effectively prevent retinal inflammation. Thus, it may be a promising strategy to produce long-lasting effects in suppressing abnormal retinal inflammation and preventing photoreceptor death.

Devices for Improved Tissue Cryopreservation and Recovery

Researchers at the National Eye Institute (NEI), have developed a cryopreservation and cell recovery system designed specifically for the efficient cryopreservation, transportation and subsequent thawing of monolayers and tissues on a substrate. This closed cryopreservation/defrost system allows for sterility in addition to increased viability, recovery and safety of tissues that can be used for in vitro culture or surgical transplantation.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Pages