You are here

Share:

Search Technologies

Showing 21-40 of 333 results found

Methods For Treating or Preventing Inflammation and Periodontitis

Natural products have long been considered a source of biologically active molecules against health disorders, including bone-loss related diseases. Cinnamolyoxy-mammeisin (CNM), can be isolated from Brazilian geopropolis and demonstrates anti-inflammatory activity. Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the Piracicaba Dental School, University of Campinas, Brazil, have shown CNM also demonstrates inhibition of oral bone loss. This invention is available for licensing and/or co-development opportunities.

New Chimeric Antigen Receptor (CAR) Format for Developing Improved Adoptive Cell Therapies

Researchers at the National Cancer Institute (NCI) have developed a new format for expressing Chimeric Antigen Receptors (CARs) that is available for licensing and co-development. The inventors found that there was an increased therapeutic effect when using their proprietary (anti-glypican 3 [GPC3]) hYP7 antibody in this format. The novel technology is useful for improving CAR therapies to treat a range of cancers.

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Inventors at the National Cancer Institute (NCI) have developed chimeric antigen receptors (CARs) that target two B cell surface antigens, CD19 and CD22, improving treatment of B-cell malignancies, such as acute lymphoblastic leukemia (ALL). NCI is actively seeking parties interested in licensing this invention to commercialize the bicistronic CAR construct targeting CD19 and CD22 for immunotherapy.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Gene Signature for Predicting Solid Tumors Patient Prognosis

The National Cancer Institute’s Laboratory of Human Carcinogenesis seeks parties to license or co-develop a method of predicting the prognosis of a patient diagnosed with hepatocellular carcinoma (HCC) or breast cancer by detecting expression of one or more cancer-associated genes, and a method of identifying an agent for use in treating HCC.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Chimeric antigen receptor (CAR) T cells that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for patients with neuroblastoma and other GPC2-expressing cancers. The inventors at the National Cancer Institute (NCI) have developed a potent anti-GPC2 (CT3) CAR containing CD28 hinge and transmembrane domains (CT3.28H.BBζ) that is available for licensing and co-development.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Researchers at the National Cancer Institute (NCI) have isolated two Glypican-1- (GPC1)- specific antibodies: the mouse monoclonal antibody HM2 that binds the C-lobe of GPC1 close to the cell surface, and the camel single domain antibody D4. The D4 single domain antibody (also called ‘nanobody’) has a high affinity for GPC1-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Pages