You are here

Share:

Search Technologies

Showing 1-20 of 47 results found

The Biospecimen Pre-analytical Variables (BPV) Program

The Biorepositories and Biospecimen Research Branch (BBRB) at the National Cancer Institute (NCI) has sponsored various initiatives for conducting biospecimen research. Through these initiatives, NCI seeks to advance biospecimen science and improve research reproducibility by investigating how different biospecimen collection, handling and processing procedures affect biospecimen molecular profiles. BBRB is seeking collaborators to extend these studies.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

High-throughput Assay to Identify New Cancer Drugs

The National Cancer Institute seeks parties interested in collaborative research to evaluate or commercialize a diagnostic tool that can identify new drugs that increase chromosome instability.

Automated Cancer Diagnostic Tool of Detecting, Quantifying and Mapping Mitotically-Active Proliferative Cells in Tumor Tissue Histopathology Whole-Slide Images

The National Cancer Institute (NCI) seeks research, co-development, or licensing partners for software that uses computational approaches in cancer diagnosis. NCI researchers have recently developed a computational approach for detecting, quantifying, and mapping Mitotic Hotspots in whole slide images of tumor tissue. This technology has demonstrated high reproducibility that is unaffected by diagnostic skill or fatigue, allowing standardization of tumor cell proliferation assessment across institutions.

Mouse Embryo Culture Chamber and Imaging System and Methods of Use

Scientists at the National Eye Institute (NEI) have developed an embryo culture chamber, which can be used to culture and image embryos. The chamber allows for the continuous imaging of the embryo for the culture period. NEI seeks research collaborations and/or licensees for the development of this culture and imaging chamber for murine embryos.

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

A Mobile Health Platform

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a mobile health technology that monitors and predicts a user’s psychological status in order to deliver an automated intervention when needed.

Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Scientists at The National Cancer Institute (NCI) and The National Institute of Neurological Disorders and Stroke (NINDS) have invented a method of imaging glucose metabolism in vivo using MRI chemical shift imaging (CSI) experiments that relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular value decomposition, tensor decomposition. This new technology is denoising software for MRIs that significantly improves the measurement of low-intensity signals without the need for dynamic nuclear polarization (DNP). The scientists seek research co-development partners and/or licensees for their invention.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Researchers at the National Institute of Child Health and Human Development (NICHD) developed a device simulating a blast shock wave of the type produced by explosive devices such as bombs. The invention allows for the real-time study of blast effects on in vitro cell models. NICHD researchers seek licensing opportunities to further develop this device.

Video Monitoring and Analysis System for Vivarium Cage Racks

This invention pertains to a system for continuous observation of rodents in home-cage environments with the specific aim to facilitate the quantification of activity levels and behavioral patterns for mice housed in a commercial ventilated cage rack.  The National Cancer Institute’s Radiation Biology Branch seeks partners interested in collaborative research to co-develop a video monitoring system for laboratory animals.

Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy (CP)

Researchers at the National Institutes of Health Clinical Center (NIHCC) and Northern Arizona University (NAU) seek licensing and/or co-development research collaborations for a wearable, pediatric, robotic exoskeleton that facilitates knee extension during walking to provide motorized movement assistance and training through the gait cycle. The Robotic Exoskeleton is specifically designed for therapy of crouch gait in children with cerebral palsy (CP). The design is a customizable human-machine interface that allows an individualized assistance protocol to help preserve and enhance muscle strength and control. Early clinical results from this intervention appear promising for a condition having few effective long-term interventions.

Pages