This invention identifies two polymorphic genetic markers in the SLCO1B3 (formerly SLC21A8) gene, called 334T>G and 699G>A, that can be measured in genomic DNA obtained from a blood sample to predict survival from diagnosis of prostate cancer in that individual patient.
NCI scientists developed a method that uses urine samples to detect early-stage cancers and that could supplement low-dose computed tomography (LD-CT) for early-stage cancer detection, and significantly decrease expensive false negative/false positive results. The NCI seeks co-developers or licensees to commercialize this technology.
Researchers at the National Cancer Institute’s Biopharmaceutical Development Program recently developed massively parallel sequencing methods for virus-derived therapeutics such as viral vaccines and oncolytic immunotherapies, for which the NCI seeks licensees or co-development collaborations.
Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.
The invention is a novel methodology for predicting a mantle cell lymphoma (MCL) cancer patient’s survival prognosis. This information is important in helping determine the best course of treatment for the patient.