You are here

Share:

Search Technologies

Showing 41-60 of 160 results found

Cyclic Peptides as Non-Hormonal Male Contraceptive Agents and Methods of Use Thereof

The National Institute of Child Health and Human Development (NICHD) seeks licensees and/or research co-development partners for the development of cyclic peptides or peptidomimetic molecules as potential non-hormonal contraceptives for males. The cyclic peptides disrupt spermatogenesis by inhibiting the phosphorylation of GRTH/DDX25 (gonadotropin-regulated testicular helicase).

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Scientists at the National Institute on Drug Abuse (NIDA) have developed novel dopamine D3 receptor (D3R) agonists with high affinity and selectivity. Two lead compounds, 53 and eutomer 53a, have demonstrated significantly higher D3R binding selectivity than reference compounds. Moreover, 53 and 53a showed metabolic stability in liver microsomes, which is favorable for the future use of these compounds as therapeutic agents for diseases related to dopamine system dysregulation such as Parkinson’s Disease and Restless Legs Syndrome. Researchers at NIDA seek licensing and/or co-development research collaborations for the use of these D3R agonists as molecular tools for the study of D3R physiology and as potential therapeutics to treat neurological and neuropsychiatric disorders.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  The National Eye Institute seeks parties interested in licensing or collaborative research to co-develop a process for the production of regulatory B-Cells for use in auto-immune indications.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Researchers at the National Cancer Institute (NCI) developed several high-affinity monoclonal antibodies to treat Fibroblast Growth Factor Receptor 4 (FGFR4)-related diseases including rhabdomyosarcoma and cancers of the liver, lung, pancreas, ovary and prostate. These antibodies have been used to generate antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs), which are capable of specifically targeting and killing diseased cells. NCI seeks co-development opportunities or licensees for this technology.

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

Fusion Proteins as HIV-1 Entry Inhibitors

Novel fusion proteins with good stability and potency against HIV-1. These fusion proteins have good drug properties and potential as prophylactics or therapeutics against HIV-1 infection. Researchers at the NCI seek licensing for the development and commercialization of novel fusion proteins as therapeutics or prophylactics against HIV-1 infection.

Genetically Modified Hematopoietic Stem And Progenitor Cells (HSPCs) And Mesenchymal Cells As A Platform To Reduce Or Prevent Metastasis, Treat Autoimmune And Inflammatory Disorders, And Rebalance The Immune Milieu And Dysregulated Niches

There is a marked increase in immunosuppressive myeloid progenitors and myeloid cells in tumors and at metastatic tissue sites, rendering these types of cells useful in cancer therapeutics – especially after genetic modifications to improve their anti-tumor properties. The National Cancer Institute (NCI) seeks research co-development or licensing for genetically engineered myeloid cells (GEMys) for use in cancer immunotherapy.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

High Affinity Cross Species Single Domain Antibodies Targeting Mesothelin

Researchers at the National Cancer Institute (NCI) have isolated two high affinity anti-mesothelin single domain antibodies (also known as nanobodies), A101 and G8. These antibodies have been isolated from NCI’s newly developed camel single domain (VHH) libraries by phage display. The antibodies have a high affinity for mesothelin-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Researchers at the National Cancer Institute (NCI) have isolated two Glypican-1- (GPC1)- specific antibodies: the mouse monoclonal antibody HM2 that binds the C-lobe of GPC1 close to the cell surface, and the camel single domain antibody D4. The D4 single domain antibody (also called ‘nanobody’) has a high affinity for GPC1-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Pages