You are here

Share:

Search Technologies

Showing 41-60 of 333 results found

Aryl Hydantoin Heterocycle Compounds that Target the Androgen Receptor for Prostate Cancer Treatment

Researchers at the National Cancer Institute (NCI) have developed aryl hydantoin heterocycles that target the androgen receptor (AR). NCI seeks research co-development partners and/or licensees to develop these compounds as therapeutics for prostate cancer. As these compounds consist of both AR agonists and antagonists, they may also be effective therapeutics for androgen dysfunctional disorders, such as androgen deficiency disorders or hyperandrogenism.

Assay to Screen Anti-metastatic Drugs

The National Cancer Institute seeks licensees for a model used to study molecular mechanisms and/or signaling pathways involved in tumorigenesis, angiogenesis and metastasis of breast cancer and its response to therapy.

Assays for Measuring and Quantifying DNA Damage

The National Cancer Institute seeks partners interested in licensing or co-development of assays for determining the levels of gamma-H2AX/H2AX to measure and quantify DNA damage.

AT-3 Mouse Breast Tumor Cell Line

The National Cancer Institute (NCI) seeks licensees for the AT-3 mouse breast tumor cell line derived from an autochthonous tumor model.

Automated Cancer Diagnostic Tool of Detecting, Quantifying and Mapping Mitotically-Active Proliferative Cells in Tumor Tissue Histopathology Whole-Slide Images

The National Cancer Institute (NCI) seeks research, co-development, or licensing partners for software that uses computational approaches in cancer diagnosis. NCI researchers have recently developed a computational approach for detecting, quantifying, and mapping Mitotic Hotspots in whole slide images of tumor tissue. This technology has demonstrated high reproducibility that is unaffected by diagnostic skill or fatigue, allowing standardization of tumor cell proliferation assessment across institutions.

Bacteriophage Based-Vaccine System

Scientists at the National Cancer Institute (NCI) developed an engineered bacteriophage lambda () vector for displaying antigens to be used as a vaccine in treatment of cancers and infectious diseases. The NCI seeks licensing and/or co-development research collaborations for further development of the Bacteriophage based-vaccine system.

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Chimeric Antigen Receptors (CARs) are engineered proteins that can be used in a therapeutic capacity when expressed by an immune cell (e.g., a T cell). Specifically, CARs comprise a targeting domain (such as an antibody or binding fragment thereof) as well as domains that activate immune cells. By selecting a targeting domain that binds to a protein that is selectively expressed on a cancer cell, it is possible to target immune cells to the cancer cells. Upon binding to the target cell, the immune cells are activated, leading to the destruction of the cancer cell. This therapeutic approach holds great promise, as evidenced by the recent FDA-approval of CAR-T cell therapies, KYMRIAH and YESCARTA, both of which target CD19.

Bile Acids and Other Agents that Modulate the Gut Microbiome for the Treatment of Liver Cancer

Researchers at the National Cancer Institute (NCI) have discovered that primary bile acids and antibiotics are a novel therapeutic for the treatment of liver cancer and liver metastases. NCI is seeking parties interested in licensing and/or co-developing primary bile acids and antibiotics that have been demonstrated in vivo to attract natural killer T (NKT) cells to the liver and inhibit tumor development.

Bioluminescent Bladder Cancer Cell Line for Tracking Cancer Progression

Researchers at the National Cancer Institute (NCI) have developed a bioluminescent MB49-luciferase bladder cancer cell line that can be used in preclinical studies to evaluate anti-cancer agents in bladder cancer. NCI seeks parties to non-exclusively license this research material.

Biomarker Analysis Software for High-Throughput Diagnostic Multiplex Data

Extracellular vesicles (EVs) are lipid spheres released from cells. EVs contain proteins that can serve as diagnostic biomarkers indicating the cell state at time of release. Improved detection and phenotyping of EVs and their protein cargo could lead to better cancer diagnostic and prognostic tests, as well as improved therapeutic uses. The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a software package that performs high-throughput multi-dimensional analysis of EV biomarkers.

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. The NCI Radiation Oncology Branch seeks parties interested in licensing or co-development of RNA biomarker signature(s) for radiation biodosimetry.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Brain endothelial reporter cells

The National Cancer Institute seeks parties interested in co-development of safe and effective TEM5 agonists and/or antagonists that modulate WNT signaling.

Pages