You are here

Share:

Search Technologies

Showing 1-20 of 66 results found

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E6. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Novel Human Immunogenic Epitopes of the Human Endogenous Retrovirus ERVMER34-1

Researchers at the NCI developed immunologically active peptides of the human endogenous retrovirus ERVMER34-1 that bind to human leukocyte antigen A2 (HLA-A2) and elicit multifunctional T cell responses in cancer patients. These peptides and associated agonist epitopes can be used to develop cancer vaccines for the prevention and/or treatment of several cancer types. NCI seeks licensees or co-development partners to commercialize this invention.

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a T-cell receptor (TCR) that confers high-avidity recognition of the HPV-specific oncoprotein E7. The TCR may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Nanobodies Neutralizing Lassa Virus

The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.

Therapeutics Against Pathogenic Coronaviruses

The Eunice Kennedy Shriver National Institute of Child Health and Human Development seeks research co-development partners and/or licensees to further develop and commercialize PIKfyve phosphatidyl linositol kinase inhibitors for the treatment of pathogenic coronaviruses.

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Scientists at the National Cancer Institute (NCI) seek licensees or co-development partners for a multispectral detection method capable of discriminating different Molecular NanoTag components. The capacity to discriminate further increases the sensitivity of detection for NanoTag molecules. Adaptations of this technology could also apply to incorporate spectral scatter detection in other cytometric and microfluidic systems.

Molecular Nanotags for Detection of Single Molecules

Researchers at the National Cancer Institute (NCI) developed novel molecular nanotags for single biological nanoparticle detection, resolution, and sorting, by flow cytometry. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations to further advance this technology with extremely broad biomedical, biodefense, industrial, environmental, and other applications.

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

The National Eye Institute seeks research and co-development partners and/or licensees to: (1) advance the production and uses of the new RNA preparation method; (2) manufacture reagent kits for testing in patients with suspected COVID-19 and other DNA/RNA viruses, and (3) manufacture reagent kits for patient biomarker profiles and inherited disease diagnostics.

HIV-1 IN Mutant in a Single Round Vector

The National Cancer Institute (NCI) seeks potential non-exclusive licensees for a collection of mutated single-round vectors for testing of potential Integrase Strand Transfer Inhibitor (INSTI) and reverse transcriptase (RT) inhibitor drugs.

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.

A Murine Model of Inflammation Based on Chronic Expression of Interferon-Gamma

The National Cancer Institute (NCI) has a novel mouse model of autoimmunity based on chronic interferon-gamma expression (ARE-Del). This mouse can be used as an in vivo model to study female-biased autoimmune diseases, including: Systemic Lupus Erythematosus, Primary Biliary Cholangitis, and Ovarian Failure Syndrome.

Immunogens for Use in a High Efficacy HIV Vaccine

Prevention and control of human immunodeficiency virus (HIV) infections require a vaccine providing long-lasting protection. The most promising vaccine up to date consists of a regimen of immunization with genetically engineered HIV proteins, including the surface glycoprotein gp120, with a resulting efficacy of ~30%. Recent evidence indicates antibodies produced against variable envelope region 2 (V2) of gp120 in primates are associated with higher levels of protection, while antibodies produced against variable envelope region 1 (V1) have an opposite and interfering effect. Researchers at the National Cancer Institute (NCI) and New York University (NYU) have developed V1-deleted gp120 immunogens using Simian immunodeficiency virus (SIV), and observed an increase in antibodies against V2 in macaques upon immunization. NCI is seeking parties interested in co-developing and/or licensing V1-deleted gp120 immunogens for their use in an improved HIV vaccine.

Polymer-Cast Inserts for Cell Histology and Microscopy

The National Cancer Institute (NCI) seeks co-development partners and/or licensees for polymer-cast inserts for cell histology and microscopy; a system for high throughput three-dimensional (3D) cell culture and screening microscopy.

Pages