You are here

Share:

Search Technologies

Showing 61-80 of 191 results found

T-Cell Therapy Against Patient-Specific Cancer Mutations

Scientists at the National Cancer Institute's Surgery Branch developed a method to identify T cells that specifically recognize immunogenic mutations expressed only by cancer cells. The NCI seeks parties interested in collaborative research to co-develop or license T-cell therapy against cancer mutations.

Genetically Modified Hematopoietic Stem And Progenitor Cells (HSPCs) And Mesenchymal Cells As A Platform To Reduce Or Prevent Metastasis, Treat Autoimmune And Inflammatory Disorders, And Rebalance The Immune Milieu And Dysregulated Niches

There is a marked increase in immunosuppressive myeloid progenitors and myeloid cells in tumors and at metastatic tissue sites, rendering these types of cells useful in cancer therapeutics – especially after genetic modifications to improve their anti-tumor properties. The National Cancer Institute (NCI) seeks research co-development or licensing for genetically engineered myeloid cells (GEMys) for use in cancer immunotherapy.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is the only organ capable of producing conventional, mature T cells; a crucial part of the adaptive immune system. However, its efficiency and function are progressively reduced as we age, leading to a compromised immune system in the elderly. Moreover, production of T cells with specific receptors is an important concern for cancer immunotherapy. Current in vitro methods produce immature T cells that are not useful for therapy. Researchers at the National Cancer Institute (NCI) have generated an autologous thymic organoid from human pluripotent stem cells to address this problem. The organoid can be used to develop clinical applications such as production of autologous T and natural killer T (NKT) cells and reconstitution of the adaptive immune system. NCI is seeking licensees for the thymic organoid and the method of its generation to be used in a variety of clinical applications.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Use of the TP5 Peptide for the Treatment of Cancer

Increased cyclin-dependent kinase 5 (CDK5) activity has recently emerged as a contributor to cancer progression. Researchers at the National Cancer Institute (NCI) and at the National Institute of Neurological Disorders and Stroke (NINDS) have shown that TP5, a small peptide inhibitor of CDK5 modified to facilitate passage through the blood brain barrier (BBB), has potential therapeutic benefit in glioblastoma (GBM) and colorectal carcinoma (CRC). NCI is seeking parties interested in co-developing and/or licensing TP5 for its use in the treatment of cancers with aberrant CDK5 expression as a mono-therapy or in an adjuvant setting with current standard-of-care.

High Affinity Cross Species Single Domain Antibodies Targeting Mesothelin

Researchers at the National Cancer Institute (NCI) have isolated two high affinity anti-mesothelin single domain antibodies (also known as nanobodies), A101 and G8. These antibodies have been isolated from NCI’s newly developed camel single domain (VHH) libraries by phage display. The antibodies have a high affinity for mesothelin-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

High Affinity Monoclonal Antibodies Targeting Glypican-1

Researchers at the National Cancer Institute (NCI) have isolated two Glypican-1- (GPC1)- specific antibodies: the mouse monoclonal antibody HM2 that binds the C-lobe of GPC1 close to the cell surface, and the camel single domain antibody D4. The D4 single domain antibody (also called ‘nanobody’) has a high affinity for GPC1-positive tumor cells from both human and mouse origins. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Nanoparticle-hydrogel Composite for Nucleic Acid Molecule Delivery

The National Cancer Institute (NCI) seeks research a co-development partner and/or licensees for applications utilizing the nanoparticle platform technology for delivery of cancer-specific microRNAs, particularly for therapeutic uses in surface cancers, such as mesothelioma.

Methods of Producing T-cell Populations Using P38 MAPK Inhibitors

Researchers at the National Cancer Institute (NCI) developed a method of producing larger populations of minimally-differentiated, persistent T-cells, which is critical for successful treatments, using p38 mitogen-activated protein kinase (MAPK) inhibitors. NCI seeks licensing and/or co-development research collaborations to further develop, evaluate, and/or commercialize this new method.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

siRNA Delivery Using Hexameric Tetrahedral RNA Nanostructures for Gene Silencing

Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticles can contain twelve Dicer substrate RNA duplexes for gene silencing. The NCI seeks parties interested in co-development or licensing of these tetrahedral RNA nanoparticles.

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Chimeric Antigen Receptors (CARs) are engineered proteins that can be used in a therapeutic capacity when expressed by an immune cell (e.g., a T cell). Specifically, CARs comprise a targeting domain (such as an antibody or binding fragment thereof) as well as domains that activate immune cells. By selecting a targeting domain that binds to a protein that is selectively expressed on a cancer cell, it is possible to target immune cells to the cancer cells. Upon binding to the target cell, the immune cells are activated, leading to the destruction of the cancer cell. This therapeutic approach holds great promise, as evidenced by the recent FDA-approval of CAR-T cell therapies, KYMRIAH and YESCARTA, both of which target CD19.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Potassium Hydroxy Citrate Promotes Longevity and Efficacy of Anti-Tumor T cells for Adoptive Cell Therapy (ACT)

Adoptive cell therapy (ACT) using tumor-specific T cells leads to complete tumor regression in some cancer patients. However, limiting the efficacy of this therapy is that T cells become functionally exhausted and have short half-lives after adoptive transfer. Researchers at the National Cancer Institute (NCI) have discovered a novel method to generate long-lived memory tumor-specific T cells with enhanced tumor clearance and persistence upon in vivo transfer. NCI is seeking parties interested in licensing and/or co-developing potassium hydroxy citrate to promote longevity and efficacy of tumor-specific T cells.

Anti-SLAMF7 Chimeric Antigen Receptors

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target Signaling Lymphocyte Activation Molecule F7 (SLAMF7) are strong therapeutic candidates for patients with Multiple Myeloma (MM). SLAMF7 is highly expressed on the malignant plasma cells that constitute MM. The expression of SLAMF7 by MM cells and lack of expression on nonhematologic cells makes SLAMF7 an attractive therapeutic target for MM. Researchers at the National Cancer Institute (NCI) have invented anti- SLAMF7 CAR constructs that allow genetically-modified T cells to express both the anti-SLAMF7 antibody and a suicide gene that allows T cells to specifically recognize and kill SLAMF7-expressing cells as well as allow for on-demand and reliable elimination of anti-SLAMF7 CAR T cells. NCI seeks licensing and/or co-development partners for this invention.

Pages