You are here

Share:

Search Technologies

Showing 1-20 of 63 results found

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Reporter Plasmid to Identify Cancer Stem Cells

The National Cancer Institute’s Laboratory of Cancer Biology and Genetics seeks partners to co-develop lentiviral plasmids, a research tool for visualizing and purifying cancer stem cells.

Non-invasive Methods for Characterizing Adrenocortical Tumors

Researchers at the NCI developed a non-invasive method for distinguishing benign from malignant adrenocortical tumors using urine samples. The NCI seeks parties to co-develop a non-invasive, diagnostic method of distinguishing between benign and malignant adrenocortical tumors through the analysis of metabolites using urine samples.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Researchers at the National Cancer Institute (NCI) have identified a biomarker signature of viral infection that correlates with hepatocellular carcinoma (HCC) incidence in at-risk individuals. It has been validated in a longitudinal cohort to detect HCC with high sensitivity and specificity up to 7 years prior to clinical diagnosis. This viral exposure signature can be easily implemented into diagnostic assays for screening of HCC and is available for licensing and/or co-development opportunities.

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Researchers at the National Cancer Institute (NCI) have developed a gene-expression profiling-based molecular diagnostic assay to diagnose and classify primary mediastinal large B cell lymphoma (PMBCL) from diffuse large B cell lymphoma (DLBCL). The diagnosis can be done using routinely available formalin-fixed, paraffin-embedded (FFPE) biopsies. The NCI seeks licensees and/or co-development partners to commercialize this technology.

MADCO-Accelerated Multidimensional Diffusion MRI

The marginal distribution constrained optimization (MADCO) methodology is disclosed wherein a 2D (or higher-dimensional) spectrum is estimated from initial 1D marginal distribution data. These 1D marginal distributions are used as constraints in the reconstruction of the 2D spectra. MADCO accelerates and improves the reconstruction of multidimensional NMR relaxation/diffusion spectra, making it suitable for MRI applications on a voxel-by-voxel basis by vastly reducing the amount of data acquired and data necessary for creating MRI images.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

The Biospecimen Pre-analytical Variables (BPV) Program

The Biorepositories and Biospecimen Research Branch (BBRB) at the National Cancer Institute (NCI) has sponsored various initiatives for conducting biospecimen research. Through these initiatives, NCI seeks to advance biospecimen science and improve research reproducibility by investigating how different biospecimen collection, handling and processing procedures affect biospecimen molecular profiles. BBRB is seeking collaborators to extend these studies.

3D Image Rendering Softwarefor Biological Tissues

The Frederick National Laboratory for Cancer Research seeks parties interested in collaborative research to co-develop software for the automatic 3-D visualization of biological image volumes.

A Gene-Based Prognostic for Hepatocellular Carcinoma Patient Response to Adjuvant Transcatheter Arterial Chemoembolization

The gold standard of care for hepatocellular carcinoma patients with intermediate- to locally advanced tumors is transcatheter arterial chemoembolization (TACE), a procedure whereby the tumor is targeted both with local chemotherapy and restriction of local blood supply. NCI scientists have identified a 14-gene signature predictive of response to TACE, and NCI seeks licensees or co-development partners to develop the technology toward commercialization.

SLCO1B3 Genotyping to Predict a Survival Prognosis of Prostate Cancer

This invention identifies two polymorphic genetic markers in the SLCO1B3 (formerly SLC21A8) gene, called 334T>G and 699G>A, that can be measured in genomic DNA obtained from a blood sample to predict survival from diagnosis of prostate cancer in that individual patient.

Non-Invasive In Vivo MRI Method to Image Salient Features of Axons and Nerves

Scientists from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have developed a novel diffusion Magnetic Resonance Imaging (MRI) experimental and modeling framework to measure new and useful microanatomical features of white matter (and gray matter), which are closely related to the function of the central nervous system (CNS) or peripheral nervous system (PNS). This invention is available for licensing or co-development partners.

Quantitative In Vivo Methods for Measuring Brain Networks

Researchers at the NICHD seek licensing and/or co-development research collaborations for a Magnetic Resonance Imaging (MRI) method to quantitatively measure in vivo the estimated conduction time of nerve impulses in the brain.

Pages