You are here

Share:

Search Technologies

Showing 1-20 of 249 results found

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in KRAS antigen, expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

Chimeric Antigen Receptors to CD276 for Treating Cancer

This licensing opportunity from the National Cancer Institute concerns the development of CARs comprising an antigen-binding fragment derived from the MGA271 antibody. The resulting CARs can be used in adoptive cell therapy treatment for neuroblastoma and other tumors that express CD276.

Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration

Researchers at the National Eye Institute have developed a new cytokine therapy that delivers functional interleukin 34 (IL-34) to the retina for treating ocular inflammatory diseases – such as uveitis and degenerative retinal diseases. Intraocular delivery of IL-34 protein or IL-34 gene expression system can effectively prevent retinal inflammation. Thus, it may be a promising strategy to produce long-lasting effects in suppressing abnormal retinal inflammation and preventing photoreceptor death.

Anti-Viral Compounds that Inhibit HIV Activity

The National Cancer Institute (NCI) Molecular Targets Laboratory is seeking parties interested in collaborative research to co-develop antiviral tropolone derivatives developed by systematic medicinal chemistry on the lead series.

In silico design of RNA nanoparticles

The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop RNA nanostructures using computational and synthetic methods.

A Triple Combination HIV Microbicide

Three anti-HIV proteins- the antiviral lectin cyanovirin, the antiviral lectin griffithsin, and the monoclonal antibody 2G12- have been successfully expressed in the same rice seed. The co-expression allows for a low cost, stable production method for a triple anti-HIV microbicide for the prevention of HIV. The National Cancer Institute (NCI) seeks licensees for the invention microbicide and production method.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Antibodies that specifically recognize and bind to the unshed portion (“stalk”) of human mesothelin are strong therapeutic candidates because they maintain contact with the cancer cell for a longer duration than other anti-mesothelin antibodies that are currently available. The National Cancer Institute (NCI) has developed such antibodies that specifically recognize and bind to the stalk of human mesothelin with high affinity. The NCI seeks licensing and/or co-development research collaborations to advance the development and commercialization of these antibodies.

Improved Personalized Cancer Immunotherapy

The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

Selective estrogen-receptor modulators (SERMs) confer protection against photoreceptor degeneration

Researchers at the National Eye Institute (NEI) have discovered a novel therapeutic strategy of using one or more selective estrogen-receptor modulators (SERMs), which may include the FDA-approved drug, Tamoxifen, for treating retinal degenerative diseases, like retinitis pigmentosa (RP) and age-related degeneration (AMD). SERMs exert their specific protection on photoreceptor degeneration likely by inhibiting microglial activation.

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.

Interleukin 24 (IL-24) to treat inflammatory diseases

Researchers at the National Eye Institute (NEI) have developed a novel therapeutic strategy of using recombinant IL-24 protein to treat inflammatory diseases that involve the proinflammatory T-helper 17 cell (Th17) response, such as uveitis, multiple sclerosis, rheumatoid arthritis, and Crohn’s disease. Researchers at the NEI seek licensing and/or co-development research collaborations for co-developing this technology as strategic partners or licensing it for commercialization.

Pages