You are here

Share:

Search Technologies

Showing 21-40 of 219 results found

Potassium Hydroxy Citrate Promotes Longevity and Efficacy of Anti-Tumor T cells for Adoptive Cell Therapy (ACT)

Adoptive cell therapy (ACT) using tumor-specific T cells leads to complete tumor regression in some cancer patients. However, limiting the efficacy of this therapy is that T cells become functionally exhausted and have short half-lives after adoptive transfer. Researchers at the National Cancer Institute (NCI) have discovered a novel method to generate long-lived memory tumor-specific T cells with enhanced tumor clearance and persistence upon in vivo transfer. NCI is seeking parties interested in licensing and/or co-developing potassium hydroxy citrate to promote longevity and efficacy of tumor-specific T cells.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds whose activity against HIV-1 integrase mutants confer greater resistance than currently approved INSTIs. Preliminary DMPK and ADME studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Antibody and Immunotoxin Treatments for Mesothelin-expressing Cancers

The National Cancer Institute Laboratory of Molecular Biology is seeking statements of capability or interest from parties interested in licensing or collaborative research to further develop, evaluate, or commercialize antibody-based treatments of mesothelin-expressing cancers.

Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration

Researchers at the National Eye Institute have developed a new cytokine therapy that delivers functional interleukin 34 (IL-34) to the retina for treating ocular inflammatory diseases – such as uveitis and degenerative retinal diseases. Intraocular delivery of IL-34 protein or IL-34 gene expression system can effectively prevent retinal inflammation. Thus, it may be a promising strategy to produce long-lasting effects in suppressing abnormal retinal inflammation and preventing photoreceptor death.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Fusion Proteins as HIV-1 Entry Inhibitors

Novel fusion proteins with good stability and potency against HIV-1. These fusion proteins have good drug properties and potential as prophylactics or therapeutics against HIV-1 infection. Researchers at the NCI seek licensing for the development and commercialization of novel fusion proteins as therapeutics or prophylactics against HIV-1 infection.

Assay to Screen Anti-metastatic Drugs

The National Cancer Institute seeks licensees for a model used to study molecular mechanisms and/or signaling pathways involved in tumorigenesis, angiogenesis and metastasis of breast cancer and its response to therapy.

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

Nanoparticle-hydrogel Composite for Nucleic Acid Molecule Delivery

The National Cancer Institute (NCI) seeks research a co-development partner and/or licensees for applications utilizing the nanoparticle platform technology for delivery of cancer-specific microRNAs, particularly for therapeutic uses in surface cancers, such as mesothelioma.

Margaric Acid Decreases PIEZO2 Mediated Pain

Investigators at the National Center for Complimentary and Integrative Health (NCCIH) and the University of Tennessee Health and Science Center have shown that administration of margaric acid can ameliorate pain induced by a variety of noxious stimuli in mice. In vitro and ex vivo studies in human and murine neural cells indicate that the mechanism of action of margaric acid is mediated by PIEZO2 (Piezo-type mechanosensitive ion channel component 2) function. NCCIH seeks research co-development partners and/or licensees for methods of using the fatty acid, margaric acid to treat pain.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.

RNA/DNA Nanoparticles as Cancer Therapeutics

The technology is directed to the use of single-stranded RNA overhangs or toeholds of varying lengths (< 12 nucleotides) contained in nucleic acid-based nanoparticles which trigger the association of these nanoparticles and activates multiple functionalities such as gene silencing and/or cell-specific targeting. The use of RNA toeholds is superior to that of DNA toeholds in that it allows for smaller nanoparticles (fewer nucleotides for the toeholds) resulting in greater chemical stability, less immunogenic and higher yield of production. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for use of RNA overhangs or toeholds in nucleic acid nanoparticles.

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Scientists at the National Institute on Drug Abuse (NIDA) have developed novel dopamine D3 receptor (D3R) agonists with high affinity and selectivity. Two lead compounds, 53 and eutomer 53a, have demonstrated significantly higher D3R binding selectivity than reference compounds. Moreover, 53 and 53a showed metabolic stability in liver microsomes, which is favorable for the future use of these compounds as therapeutic agents for diseases related to dopamine system dysregulation such as Parkinson’s Disease and Restless Legs Syndrome. Researchers at NIDA seek licensing and/or co-development research collaborations for the use of these D3R agonists as molecular tools for the study of D3R physiology and as potential therapeutics to treat neurological and neuropsychiatric disorders.

Tethered Interleukin-15 (IL-15)/IL-21 to Enhance T Cells for Cellular Therapy

Researchers at the National Cancer Institute (NCI) have developed a method to improve the function of therapeutic engineered T cells used for Adoptive T Cell Therapy (ACT) for various cancers and diseases through the co-expression of Interleukin-15 (IL-15) and IL-21 by a flexible linker to the cell membrane. Researchers at the NCI seek licensing for this invention.

Pages