You are here

Share:

Search Technologies

Showing 341-354 of 354 results found

Reporter Plasmid to Identify Cancer Stem Cells

The National Cancer Institute’s Laboratory of Cancer Biology and Genetics seeks partners to co-develop lentiviral plasmids, a research tool for visualizing and purifying cancer stem cells.

Automated Cancer Diagnostic Tool of Detecting, Quantifying and Mapping Mitotically-Active Proliferative Cells in Tumor Tissue Histopathology Whole-Slide Images

The National Cancer Institute (NCI) seeks research, co-development, or licensing partners for software that uses computational approaches in cancer diagnosis. NCI researchers have recently developed a computational approach for detecting, quantifying, and mapping Mitotic Hotspots in whole slide images of tumor tissue. This technology has demonstrated high reproducibility that is unaffected by diagnostic skill or fatigue, allowing standardization of tumor cell proliferation assessment across institutions.

Mitotic Figures Electronic Counting Application for Surgical Pathology

National Cancer Institute (NCI) researchers have developed a novel software tool for uniform recording of Mitotic Figure (MF) counts via conventional and/or digital microscopy. With this technology, diagnostic centers can standardize electronic recording, summation, and transcription of clinical data during surgical pathology examination. NCI seeks licensing partners to further develop this application for use in diagnosis and detection of malignant cancers.

Mouse Embryo Culture Chamber and Imaging System and Methods of Use

Scientists at the National Eye Institute (NEI) have developed an embryo culture chamber, which can be used to culture and image embryos. The chamber allows for the continuous imaging of the embryo for the culture period. NEI seeks research collaborations and/or licensees for the development of this culture and imaging chamber for murine embryos.

Aryl Hydantoin Heterocycle Compounds that Target the Androgen Receptor for Prostate Cancer Treatment

Researchers at the National Cancer Institute (NCI) have developed aryl hydantoin heterocycles that target the androgen receptor (AR). NCI seeks research co-development partners and/or licensees to develop these compounds as therapeutics for prostate cancer. As these compounds consist of both AR agonists and antagonists, they may also be effective therapeutics for androgen dysfunctional disorders, such as androgen deficiency disorders or hyperandrogenism.

Use of the TP5 Peptide for the Treatment of Cancer

Increased cyclin-dependent kinase 5 (CDK5) activity has recently emerged as a contributor to cancer progression. Researchers at the National Cancer Institute (NCI) and at the National Institute of Neurological Disorders and Stroke (NINDS) have shown that TP5, a small peptide inhibitor of CDK5 modified to facilitate passage through the blood brain barrier (BBB), has potential therapeutic benefit in glioblastoma (GBM) and colorectal carcinoma (CRC). NCI is seeking parties interested in co-developing and/or licensing TP5 for its use in the treatment of cancers with aberrant CDK5 expression as a mono-therapy or in an adjuvant setting with current standard-of-care.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health have identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in KRAS antigen, expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

Pages