You are here

Share:

Search Technologies

Showing 1-20 of 32 results found

Functionally-Interdependent Shape-Switching Nucleic Acid Nanoparticles

Researchers at the National Cancer Institute (NCI) have developed nucleic-acid-based nanoparticle that can be adapted for RNA interference (RNAi), molecular imaging, or a combination thereof. The invention nanoparticles can be used as therapeutics in the treatment of cancer, whichthe NCI seeks parties to license or co-develop.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

Scytovirin Domain 1 Related Polypeptides

Researchers at the NCI seek licensing for novel anti-HIV peptide therapeutics. The researchers developed novel proteins for HIV inhibition. Scytovirin is a potent anti-HIV protein with two domains having strong symmetry. NCI researchers produced a much smaller, functional, scytovirin domain polypeptide – SD1 – for use as a HIV therapeutic.

Fusion Proteins as HIV-1 Entry Inhibitors

Novel fusion proteins with good stability and potency against HIV-1. These fusion proteins have good drug properties and potential as prophylactics or therapeutics against HIV-1 infection. Researchers at the NCI seek licensing for the development and commercialization of novel fusion proteins as therapeutics or prophylactics against HIV-1 infection.

Improved HIV Vaccines Through Ras Activation

The National Cancer Institute (NCI) Vaccine Branch, seeks research co-development or licenses for a novel method of improving HIV vaccine efficacy by activating Ras signaling. Upregulating the Ras pathway can improve an HIV patient’s immune response to anti-retroviral vaccines.

Renal Selective Unsaturated Englerin Analogues

Researchers at the National Cancer Institute (NCI) have developed a number of analogs of the natural product englerin A, an inhibitor of renal cancer cell growth. Englerin A is thought to exert its anticancer effects by activating protein kinase C (PKC) theta, and exert cytotoxic effects through activation of transient receptor potential cation (TRPC) channels. The invention englerin analogues provide promising treatment strategies for various cancers, diabetes, and HIV, and other diseases associated with the PKC theta and/or TRPC ion channel proteins. Researchers at the NCI seek licensing and/or co-development research collaborations for englerin A analogue compounds.

A Triple Combination HIV Microbicide

Three anti-HIV proteins- the antiviral lectin cyanovirin, the antiviral lectin griffithsin, and the monoclonal antibody 2G12- have been successfully expressed in the same rice seed. The co-expression allows for a low cost, stable production method for a triple anti-HIV microbicide for the prevention of HIV. The National Cancer Institute (NCI) seeks licensees for the invention microbicide and production method.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Novel HPPK (Bacterial Protein) Inhibitors for Use as Antibacterial Agents

Researchers at the National Cancer Institute (NCI) have developed several novel small-molecule inhibitors directed against HPPK, a bacterial protein, as potential antimicrobial agents. The NCI seeks co-development partners or licensees to further develop these novel small-molecule HPPK inhibitors as broad-spectrum bactericidal agents.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Design and Biological Activity of Novel Stealth Polymeric Lipid Nanoparticles for Enhanced Delivery of Hydrophobic Photodynamic Therapy Drugs

Scientists at the National Cancer Institute (NCI) developed a novel stealth lipid-based nanoparticle formulation comprising phospholipid, DC8,9PC and a polyethylene glycol-ated (PEGylated) lipid – such as DSPE-PEG2000 – that efficiently package a high amounts of hydrophobic photodynamic drug (PDT) – such as HPPH – in stable vesicles. This HPPH-loaded liposome system demonstrates higher serum stability and ambient temperature stability upon storage. It exhibits increased tumor accumulation and improved animal survival in mice tumor models compared to the formulation in current clinical trials. The NCI seeks co-development partners and/or corporate licensees for the application of the technology as an anti-cancer therapeutic.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

Researchers at the National Cancer Institute (NCI) seek research & co-development and/or licensees for a novel, ex vivo method by which stem cell-like memory T cells (Tscm) can be generated by stimulating naïve T cells in the presence of inhibitors of GSK-3beta, which are capable of activating the Wnt pathway. These Tscm cells, generated using GSK-3beta inhibitors, display enhanced survival and proliferation upon transfer, have multipotent capacity to generate all memory and effector T cell subsets, and show increased anti-tumor activity in a humanized mouse tumor model.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Scientists at the National Cancer Institute (NCI) have developed a novel delivery platform in which the scaffold of an anionic hydrogel (AcVES3) can be attenuated to deliver therapeutic small molecules, peptides, proteins, nanoparticles, or whole cells. The NCI seeks collaborators and licensees for the development of this technology in various clinical and laboratory applications.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Pluripotent stem cells are a promising source of T cells for a variety of clinical applications. However, current in vitro methods of T cell differentiation result in the generation of cells with aberrant phenotypes. Researchers at the National Cancer Institute (NCI) have now developed methodology for generating induced pluripotent stem cell thymic emigrants (iTE). Antigen-specific CD8αβ+ iTEs exhibited functional properties in vitro that were almost indistinguishable from natural naïve CD8αβ+ T cells, including vigorous expansion and robust anti-tumor activity. iTEs recapitulated many of the transcriptional programs of naïve T cells in vivo and revealed a striking capacity for engraftment, memory formation, and efficient tumor destruction. The NCI seeks licensing and/or co-development research collaborations for this invention.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB. NCI researchers seek licensing and/or co-development of peptide inhibitors of STAT3 and IL-10 developed to treat bacterial infections such as tuberculosis. See aslo: NIH inventions E-164-2007 and E-167-2010

Pages