You are here

Share:

Search Technologies

Showing 1-20 of 56 results found

Time Efficient Multi-Pulsed Field Gradient (mPFG) MRI Without Concomitant Gradient Field Artifacts

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of diffusion tensor distribution imaging (DTD-MRI) in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Tamperless Tensor Elastography Imaging

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of tamperless tensor elastography imaging in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Researchers at the National Cancer Institute (NCI) have developed a gene-expression profiling-based molecular diagnostic assay to diagnose and classify primary mediastinal large B cell lymphoma (PMBCL) from diffuse large B cell lymphoma (DLBCL). The diagnosis can be done using routinely available formalin-fixed, paraffin-embedded (FFPE) biopsies. The NCI seeks licensees and/or co-development partners to commercialize this technology.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Researchers at the National Cancer Institute (NCI) identified a biomarker signature of viral infection that correlates with hepatocellular carcinoma (HCC) incidence in at-risk individuals. It has been validated in a longitudinal cohort to detect HCC with high sensitivity and specificity up to 7 years prior to clinical diagnosis. This viral exposure signature can be easily implemented into diagnostic assays for screening of HCC and is available for licensing and/or co-development opportunities.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Synthetic Lethality-mediated Precision Oncology via the Tumor Transcriptome

Scientists at the National Cancer Institute (NCI) have developed SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a computational precision-oncology framework harnessing genetic interactions to improve treatment options for cancer patients. NCI seeks collaborators or licensees to advance the development of this technology into precision diagnostics.

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

The National Eye Institute seeks research and co-development partners and/or licensees to: (1) advance the production and uses of the new RNA preparation method; (2) manufacture reagent kits for testing in patients with suspected COVID-19 and other DNA/RNA viruses, and (3) manufacture reagent kits for patient biomarker profiles and inherited disease diagnostics.

Anti-Py1235-Met Immunological Binding Reagent as Cancer Diagnostic

This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated. Researchers at the NCI seek licensing and/or co-development research collaborations  to commercialize and develop a companion diagnostic for selective MET inhibitors.

SLCO1B3 Genotyping to Predict a Survival Prognosis of Prostate Cancer

This invention identifies two polymorphic genetic markers in the SLCO1B3 (formerly SLC21A8) gene, called 334T>G and 699G>A, that can be measured in genomic DNA obtained from a blood sample to predict survival from diagnosis of prostate cancer in that individual patient.

3D Image Rendering Software for Biological Tissues

The Frederick National Laboratory for Cancer Research seeks parties interested in collaborative research to co-develop software for the automatic 3-D visualization of biological image volumes.

Non-invasive diagnostic and prognostic assay for early stage lung cancer

NCI scientists developed a method that uses urine samples to detect early-stage cancers and that could supplement low-dose computed tomography (LD-CT) for early-stage cancer detection, and significantly decrease expensive false negative/false positive results. The NCI seeks co-developers or licensees to commercialize this technology.

Methods for Single Cell Analysis of the Epigenome, Transcriptome, and Genome

There are currently no methodologies that allow for epigenome, genome and transcriptome analysis all in a single cell. In addition, there are currently no methodologies that permit repeating the results of these analyses on the same single cells. Scientists at the National Cancer Institute (NCI) Laboratory of Cellular Oncology have developed a method for generating a “reusable” single cell that allows for repeated experiments on the same cell. Utilizing this methodology epigenomic, genomic, and transcriptomic analysis can be performed on the same cell. NCI seeks parties to license or co-develop the technology through research collaborations.

Assays for Measuring and Quantifying DNA Damage

The National Cancer Institute seeks partners interested in licensing or co-development of assays for determining the levels of gamma-H2AX/H2AX to measure and quantify DNA damage.

Computer-Aided Diagnostic for Use in Multiparametric MRI for Prostate Cancer

Researchers at the National Institutes for Health Clinical Center (NIHCC) have developed computer-aided diagnostics (CAD) that may further improve the already superior capabilities of multiparametric magnetic resonance imaging (MRI) for detection and imaging of prostate cancer. This system produces an accurate probability map of potential cancerous lesions in multiparametric MRI images that is superior to other systems and may have multiple product applications.

Pages