You are here

Share:

Search Technologies

Showing 61-68 of 68 results found

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Researchers at the National Cancer Institute (NCI) have developed single domain human CD4 proteins to inhibit HIV-1 entry and improved human domain antibodies against HIV-1. Fusion proteins comprising the single domain CD4 and HIV-1 antibody can be used to effectively neutralize HIV-1 in vitro. Researchers seek licensing for development of these antibody-based therapeutics for the treatment of HIV-1.

Method of Neoantigen-Reactive T Cell Receptor (TCR) Isolation from Peripheral Blood of Cancer Patients

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a novel method for isolation and construction of neoantigen-reactive T-cell receptors (TCRs) from peripheral blood lymphocytes (PBL) of cancer patients. This method generates accurate scoring of single T cells from tumors, as well as facilitates identification and reconstruction of unknown TCRs for immunotherapy.

T cell tuning molecules that modify the immune response to cancer cells

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seek partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g., antibodies) to the proteins on the immune response to cancer cells. Preference will be given to responses received by March 31, 2016.

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

New T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) developed a T Cell receptor that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 epitope that is highly expressed by several common and aggressive epithelial tumor types.

Pages