You are here

Share:

Search Technologies

Showing 41-60 of 197 results found

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Vaccine for BK Polyomavirus-associated Infections in Transplant Recipients

NCI researches identified a BK polyomavirus (BKV) virulent strain that causes chronic urinary tract infections, and the development of vaccine and therapeutic methods that would block BKV pathogenesis. The NCI Laboratory of Cellular Oncology, seek parties to license or co-develop this technology.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Treating JC Polyomavirus Infection and Associated Leukoencephalopathy

The National Cancer Institute seeks parties interested in collaborative research to co-develop or license methods of treating disorders related to polyomavirus, as well as vaccines for patients undergoing immunosuppressive treatment such as multiple sclerosis, rheumatoid arthritis, B cell cancers, and Crohn’s disease.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Assays for Measuring and Quantifying DNA Damage

The National Cancer Institute seeks partners interested in licensing or co-development of assays for determining the levels of gamma-H2AX/H2AX to measure and quantify DNA damage.

Genetic Assay for Transcription Errors: Methods to Monitor Treatments or Chemicals that Increase the Error Rate of RNA synthesis

Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.

Fatty Acid Derivatives and Their Use

Researchers at the National Institutes on Aging (NIA) seek research co-development or licensees for novel compounds and pharmaceutical formulations to treat autoimmune disorder and inflammation. Other potential indications for these compounds include pain, itching, and/or skin disorders.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Cancer-reactive T cells from Peripheral Blood

T-cells capable of reacting to mutations in cancer patients have potential use as therapeutics. Identifying and isolating these cells from patients is a crucial step in developing these treatments. Researchers at the National Cancer Institute (NCI) have developed a novel method of isolating mutation-reactive T-cells from a patient’s peripheral blood lymphocytes (PBL). The NCI, Surgery Branch, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize this method of isolating mutation-reactive T-cells from peripheral blood.

Treatment Regimens for hetIL-15

Researchers at the National Cancer Institute (NCI) developed a treatment regimens for cancer and HIV using heterodimeric IL-15 (hetIL-15). The regimens allow access to B cell follicles, germinal centers, and tumor sites that are difficult for drug entry. A combination therapy for HIV infection is also described using hetIL-15 and a conserved element vaccine. Researchers seek licensing and/or co-development research collaborations for development and commercialization of treatment regimens for HIV infection.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy uses cancer reactive T-cells to effectively treat cancer patients. Producing many persistent T-cells is critical for successful treatments. Researchers at the NCI seek licensing and/or co-development research collaborations for a novel method of producing effective T-cell populations using Akt inhibitors.

Pages