You are here

Share:

Search Technologies

Showing 41-60 of 359 results found

Targeted RNA/DNA Nanoparticles with Single Stranded RNA Toeholds

The technology is directed to the use of single-stranded RNA overhangs or toeholds of varying lengths (< 12 nucleotides) contained in nucleic acid-based nanoparticles which trigger the association of these nanoparticles and activates multiple functionalities such as gene silencing and/or cell-specific targeting. The use of RNA toeholds is superior to that of DNA toeholds in that it allows for smaller nanoparticles (fewer nucleotides for the toeholds) resulting in greater chemical stability, less immunogenic and higher yield of production. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for use of RNA overhangs or toeholds in nucleic acid nanoparticles.

Target for Anti-Tumor Immune Responses

The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy.

T-Cell Receptors Targeting Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1)

Researchers at the National Cancer Institute’s Experimental Transplantation and Immunology Branch (NCI ETIB) have developed a T Cell receptor (TCR) that specifically targets the Kita-Kyushu Lung Cancer Antigen 1 (KK-LC-1) 52-60 and 90-99 epitopes which are highly expressed by several common and aggressive epithelial tumor types.

T cell Receptors Which Recognize Mutated EGFR

Researchers at the National Cancer Institute (NCI) have isolated T cell receptors (TCRs) that target specific mutations in the epidermal growth factor receptor (EGFR). The mutated protein recognized by these TCRs is frequently expressed in non-small cell lung cancer (NSCLC). These TCRs can be used for a variety of therapeutic applications, including engineered adoptive cell immunotherapy. Researchers at the NCI seek licensing and/or co-development research collaborations for these novel T cell receptors that recognize EGFR mutations.

T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

T Cell Receptors Targeting p53 Hotspot Mutations and Methods of Isolating the Same

Researchers at the National Cancer Institute (NCI) identified a collection of T Cell Receptors (TCRs) that target specific mutations in the p53 tumor suppressor protein. These TCRs recognize “hotspot” mutations, which frequently occur in a variety of unrelated cancers. These TCRs can be used for a variety of therapeutic, diagnostic and research applications. Researchers at the NCI seek licensing and/or co-development research collaborations for these novel T cell receptors that recognize p53 mutations and methods for identifying p53 mutation-reactive T cell receptors.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health have identified a collection of TCRs that specifically target mutated KRAS antigen. These TCRs exclusively recognize the G12D or G12V variants of mutated KRAS, which are common hotspot driver mutations expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of HLA-A*11:01 or HLA-C*08:02. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

T Cell Receptors (TCRs) Specific for Mutant p53

National Cancer Institute (NCI) researchers have isolated T cell receptors (TCRs) reactive to the highly prevalent p53-R175H mutant in the context of the human leukocyte antigen (HLA) class II allele, HLA-DRB1*13:01. These TCRs can be used for a variety of therapeutic, diagnostic, and research applications. NCI seeks licensing and/or co-development research collaborations for TCRs that recognize the p53-R175H mutation and the associated HLA allele, and methods for identifying p53 mutation-reactive T cell receptors.

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

Synthetic lipopeptide inhibitors of RAS oncoproteins

It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

Synthetic Bacterial Nanoparticles as Drug and Vaccine Delivery Vehicles

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license and/or co-develop this technology toward commercialization.

Synergistic Combination Agent for Cancer Therapy

The Nanotechnology Characterization Laboratory of the Frederick National Laboratory for Biomedical Research seeks parties interested in collaborative research to co-develop a ceramide and vinca alkaloid combination therapy for treatment of cancer.

Surgical Tool for Sub-retinal Tissue Implantation

Researchers at the National Eye Institute (NEI) developed a surgical tool to place tissue into position in the retina. The NEI seeks co-development or licensing to commercialize a prototype already in pre-manufacturing. Alternative uses will be considered.

Subject Matter Expertise Reference System (SMERS)

The National Institute on Drug Abuse (NIDA) is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a search engine for PubMed and other information warehouses. As a Research Tool, patent protection is not being pursued for this technology.

Sterculic Acid Treatment for Choroidal Neovascularization

The National Eye Institute (NEI) Laboratory of Retinal Cell and Molecular Biology is seeking parties interested in licensing use of sterculic acid and its derivatives for the treatment of diseases related to angiogenesis or mediated by 7-ketocholesterol-induced inflammation, in particular, atherosclerosis, age-related macular degeneration, and Alzheimer''s disease.

Pages