You are here

Share:

Search Technologies

Showing 341-354 of 354 results found

A peptide hydrogel for use in vascular anastomosis

Surgery specialists from Johns Hopkins University, in collaboration with researchers at the National Cancer Institute (NCI), developed peptide hydrogel compositions and methods to suture blood vessels during microsurgery. The hydrogels particularly benefit surgeons in whole tissue transplant procedures. The NCI seeks co-development research collaborations for further development of this technology.

A Novel Transgenic Zebrafish Line Reporting Dynamic Epigenetic Changes

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks licensees for a novel “EpiTag” epigenetic reporter transgenic zebrafish line that provides a versatile and powerful whole-animal platform for visualizing and assessing the effects of mutants, experimental treatments, or chemical compounds targeting epigenetic regulation as well as studying epigenetic regulation of global- or tissue-specific gene expression during development.

A Novel Genetically Encoded Inhibitor of Hippo Signaling Pathway to Study YAP1/TAZ-TEAD Dependent Events in Cancer

The Hippo signaling pathway is one of the most frequently altered pathways in human cancer. Researchers at the National Cancer Institute (NCI) have developed a genetically encoded peptide inhibitor of the Hippo signaling pathway members YAP1/TAZ-TEAD, to dissect and study the specific TEAD-downstream regulatory gene expression networks of cell proliferation, tissue homeostasis, and stem cell functions in different cell types and pathologies. The DNA construct encoding this inhibitor may be delivered to cells using lentivirus, adenovirus, or adeno-associated virus, and is a valuable research tool. NCI seeks licensees for this peptide inhibitor and the encoding DNA construct.

A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof

Researchers at the National Cancer Institute (NCI) have developed an improved class of heptamethine cyanine fluorophore dyes useful for imaging applications in the near-IR range (750-850 nm). A new chemical reaction has been developed that provides easy access to novel molecules with improved properties. Specifically, the dyes display greater resistance to thiol nucleophiles, and are more robust while maintaining excellent optical properties. The dyes have been successfully employed in various in vivo imaging applications and in vitro labeling and microscopy applications. The NCI seek co-development or licensees to develop them as targetable agents for optical-guided surgical interventions.

A Mobile Health Platform

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a mobile health technology that monitors and predicts a user’s psychological status in order to deliver an automated intervention when needed.

A Gene-Based Prognostic for Hepatocellular Carcinoma Patient Response to Adjuvant Transcatheter Arterial Chemoembolization

The gold standard of care for hepatocellular carcinoma patients with intermediate- to locally advanced tumors is transcatheter arterial chemoembolization (TACE), a procedure whereby the tumor is targeted both with local chemotherapy and restriction of local blood supply. NCI scientists have identified a 14-gene signature predictive of response to TACE, and NCI seeks licensees or co-development partners to develop the technology toward commercialization.

3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery

Scientists at the National Eye Institute (NEI) have developed a technology for a 3D bioprinting process. Through the process, an artificial blood retinal barrier (BRB) is constructed that may be used as a graft to potentially replace BRB tissues that are lost or damaged in many ocular disorders. The printed tissue structures might be therapeutically useful for grafts or as model systems to test function and physiological responses to drugs or other variables introduced into the system.

3D Image Rendering Softwarefor Biological Tissues

The Frederick National Laboratory for Cancer Research seeks parties interested in collaborative research to co-develop software for the automatic 3-D visualization of biological image volumes.

Pages