You are here

Share:

Search Technologies

Showing 1-20 of 209 results found

PIM-Targeted PROTACs

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a series of PIM Kinase targeting PROTACS.

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Scientists at the National Cancer Institute (NCI) developed a potent chimeric antigen receptor (CAR) targeting glypican-3 (GPC3). GPC3 is a cell surface proteoglycan preferentially expressed on Hepatocellular Carcinoma (HCC). The specific HN3 nanobody-IgG4H-CD28TM CAR included in this invention was much more potent both in in vitro cell models and in vivo mouse models. The NCI seeks licensing and/or co-development research collaborations for further development of the anti-GPC3 CAR to treat liver cancer.

T-cell Receptors Targeting Human Papillomavirus Oncoproteins

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for T-cell receptors (TCRs) that confer high-avidity recognition of the HPV-specific oncoproteins, E6 and E7. The TCRs may be used in an adoptive cell therapy approach utilizing genetically engineered lymphocytes to treat HPV-positive malignancies.

Nanobodies Neutralizing Lassa Virus

The National Cancer Institute (NCI) seek parties interested in collaborative research and/or licensing to further develop neutralizing nanobodies targeting Lassa virus as a possible treatment of Lassa virus infections.

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Researchers at the National Cancer Institute (NCI) developed improved monospecific and bicistronic chimeric antigen receptors (CARs) targeting CD19 and CD20. Importantly, CD19 and CD20 are highly expressed in diffuse large B-cell lymphoma, acute lymphoblastic leukemia and other B-cell lymphomas. These improved CARs can be useful in treating these diseases. NCI is seeking parties interested in the co-development or licensing of this invention for immunotherapy.

Cyclic Peptides as Non-Hormonal Male Contraceptive Agents and Methods of Use Thereof

The National Institute of Child Health and Human Development (NICHD) seeks licensees and/or research co-development partners for the development of cyclic peptides or peptidomimetic molecules as potential non-hormonal contraceptives for males. The cyclic peptides disrupt spermatogenesis by inhibiting the phosphorylation of GRTH/DDX25 (gonadotropin-regulated testicular helicase).

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

Investigators at the National Cancer Institute (NCI) have discovered an adjuvanted mucosal subunit vaccine to prevent SARS-CoV-2 transmission and infection. The mucosal vaccine is composed of a novel molecular adjuvant nanoparticle that induces robust humoral and cellular immunity, as well as trained innate immunity with enhanced protection against respiratory SARS-CoV-2 exposure. The technology is available for potential licensing or collaborative research to co-develop these therapeutic targets.

Enhanced Cancer Chemotherapy Using the Bioactive Peptide Recifin And Its Analogues

Scientists at the National Cancer Institute (NCI) discovered that the cyclic peptide recifin inhibits the activity of tyrosyl-DNA phosphodiesterase 1 (TDP1), a molecular target for the sensitization of cancer cells to the topoisomerase 1 (TOP1) inhibitor camptothecin and its chemotherapeutic derivatives – such as topotecan and irinotecan. NCI seeks research co-development partners and/or licensees for the development of recifin and its analogues as new chemosensitizing agents in adjunct therapies to enhance the sensitivity of cancer cells to topotecan, irinotecan and related chemotherapeutic agents.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

National Cancer Institute (NCI) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seek licensees for a technology involving the preparation and use of personalized tumor vaccines for cancer immunotherapy employing a therapeutic strategy called MBTA. MBTA consists of vaccinations with irradiated tumor cells pulsed with phagocytic agonists (Mannan-BAM, a polysaccharide derivative of mannan), TLR (Toll-like receptor) ligands, and agonistic Anti-CD40-monoclonal antibody.

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research co-development partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.

Pages