You are here

Share:

Search Technologies

Showing 101-120 of 367 results found

Angiogenesis-Based Cancer Therapeutic

The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

Analogues of Withanolide E Sensitize Cancer Cells Toward Apoptosis

There is a need to develop compounds that can sensitize cancer cells to apoptosis inducing ligands, such as poly I:C and TRAIL. In collaboration with the University of Arizona, NCI investigators discovered a series of compounds in the withanolide family that synergistically enhance the response of cancer cells to treatment with an apoptosis-inducing ligand. The NCI seeks licensing and/or co-development research collaborations for development of withanolide E analogues for the treatment of cancer.

3D Image Rendering Softwarefor Biological Tissues

The Frederick National Laboratory for Cancer Research seeks parties interested in collaborative research to co-develop software for the automatic 3-D visualization of biological image volumes.

Novel Fusion Proteins for HIV Vaccine

The National Cancer Institute’s Cancer and Inflammation Program seeks parties to license gp120 and CD4-induced antibody fusion proteins for use in an HIV vaccine.

Increased Therapeutic Effectiveness of PE-Based Immunotoxins

To improve the therapeutic effectiveness of PE-based immunotoxins through multiple rounds of drug administration, NIH inventors have sought to identify and remove the human B cell epitopes within PE. Previous work demonstrated that the removal of the murine B cell and T cell epitopes from PE reduced the immunogenicity of PE and resulted in immunotoxins with improved therapeutic activity. The National Cancer Institute's Laboratory of Molecular Biology seeks interested parties to co-develop and commercialize immunotoxins using toxin domains lacking human B cell epitopes.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Cancer Vaccine Composed of Oligonucleotides Conjugated to Apoptotic Tumor Cells

Synthetic oligodeoxynucleotides (ODN) containing unmethylated Cytosine-Guanine (CpG) motifs mimic the immunostimulatory activity of bacterial DNA. CpG ODN directly stimulate B cells and plasmacytoid dendritic cells (pDC), promote the production of T Helper 1 cells (Th1) and pro-inflammatory cytokines, and  trigger the maturation/activation of professional antigen presenting cells. The National Cancer Institute, Laboratory of Experimental Immunology, seeks interested parties to license methods for inducing an immune response to tumors.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Virus-Like Particles That Can Deliver Proteins and RNA

The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Human Research Information System (HuRIS)

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a Human Research Information System (HuRIS) software that automates all major functions of a clinical-research entity. The system is designed for commercial healthcare providers, community treatment centers, and clinical research facilities.

Treating JC Polyomavirus Infection and Associated Leukoencephalopathy

The National Cancer Institute seeks parties interested in collaborative research to co-develop or license methods of treating disorders related to polyomavirus, as well as vaccines for patients undergoing immunosuppressive treatment such as multiple sclerosis, rheumatoid arthritis, B cell cancers, and Crohn’s disease.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present technology discloses novel RNA  and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. The National Cancer Institute sees parties interested licensing this technology  or in collaborative research to co-develop RNAi-based nanoparticle therapeutics for cancer and HIV.

Mouse Xenograft Model for Mesothelioma

The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

Topical Antibiotic for Faster Wound Healing

Currently available topical antibiotic formulations effectively eliminate bacteria at a wound site. Eliminating bacteria in the wound also eliminates the molecular signals present in bacterial DNA that stimulate the immune system's wound healing processes. Without these signals, the rate of wound healing is diminished.  The National Cancer Institute Laboratory of Experimental Immunology seeks parties interested in licensing a topical antibiotic formulation to accelerate wound healing.

Pages