You are here

Share:

Search Technologies

Showing 61-80 of 360 results found

Cancer Inhibitors Isolated from an African Plant

The National Cancer Institute's Molecular Targets Development Program is seeking parties interested in collaborative research to further develop, evaluate, or commercialize cancer inhibitors isolated from the African plant Phyllanthus englerii. The technology is also available for exclusive or non-exclusive licensing.

Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

NIH scientists created and characterized an excellent mouse model for TNBC that shares important molecular characteristics of human TNBC making it highly useful for preclinical testing of drugs and novel therapies. This model may provide a valuable means of identifying new drugs and therapies that could be translated to human clinical trials.The NCI seeks parties interested in licensing this mouse model of prostate and triple-negative breast cancers to study cancer biology and for preclinical testing.

Cancer Therapeutic based on Stimulation of Natural Killer T-cell Anti-tumor Activity

Investigators at the National Cancer Institute''s Vaccine Branch have found that beta-mannosylceramide (Beta-ManCer) promotes immunity in an IFN-gamma independent mechanism and seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize beta-ManCer.

Subject Matter Expertise Reference System (SMERS)

The National Institute on Drug Abuse (NIDA) is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a search engine for PubMed and other information warehouses. As a Research Tool, patent protection is not being pursued for this technology.

Gene Signature for Predicting Solid Tumors Patient Prognosis

The National Cancer Institute’s Laboratory of Human Carcinogenesis seeks parties to license or co-develop a method of predicting the prognosis of a patient diagnosed with hepatocellular carcinoma (HCC) or breast cancer by detecting expression of one or more cancer-associated genes, and a method of identifying an agent for use in treating HCC.

T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

Use of Cucurbitacins and Withanolides for the Treatment of Cancer

The National Cancer Institute's Laboratory of Experimental Immunology, Cancer Inflammation Program, seeks parties interested in collaborative research to co-develop, evaluate, or commercialize the use of certain cucurbatacins or withanolides in combination with pro-apoptotic agonists of TRAIL death receptors for cancer therapy.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  The National Eye Institute seeks parties interested in licensing or collaborative research to co-develop a process for the production of regulatory B-Cells for use in auto-immune indications.

Pages