You are here

Share:

Search Technologies

Showing 81-100 of 359 results found

Reporter Plasmid to Identify Cancer Stem Cells

The National Cancer Institute’s Laboratory of Cancer Biology and Genetics seeks partners to co-develop lentiviral plasmids, a research tool for visualizing and purifying cancer stem cells.

Use of Heterodimeric IL-15 in Adoptive Cell Transfer

Researchers at the National Cancer Institute (NCI) have developed a technology that provides methods of performing adoptive cell transfer (ACT), an immunotherapeutic approach for cancer treatment, by administering a heterodimeric Interleukin 15/Interleukin 15 receptor alpha (IL-15/IL-15Rα) complex (hetlL-15) in the absence of lymphodepletion, thereby eliminating any lymphodepletion-associated detrimental side effects.

BHD Tumor Cell Line and Renal Cell Carcinoma Line

Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

Anti-Py1235-Met Immunological Binding Reagent as Cancer Diagnostic

This technology consists of highly specific rabbit monoclonal antibodies reactive with phosphorylated tyrosine located at amino acid 1235 in the human MET sequence. Binding to this pYl235 residue is independent of the phosphorylation of other tyrosines in the vicinity (1230 and 1234), does not cross-react with these nearby phosphotyrosine residues, and does not occur when Y1235 is unphosphorylated. Researchers at the NCI seek licensing and/or co-development research collaborations  to commercialize and develop a companion diagnostic for selective MET inhibitors.

Non-invasive diagnostic and prognostic assay for early stage lung cancer

NCI scientists developed a method that uses urine samples to detect early-stage cancers and that could supplement low-dose computed tomography (LD-CT) to significantly decrease its expensive false negative/false positive results, and the NCI seeks co-developers or licensees to commercialize this technology.

Methods of Making Extracellular Vesicles and of Reducing Their Uptake by the Liver

Researchers at the National Cancer Institute (NCI) have developed scalable cGMP-compatible technologies to obtain highly purified engineered extracellular vesicles (EVs) for therapeutic delivery. The NCI invention 1) includes novel forms of the immunotherapeutic agent heterodimeric, interleukin-15 (hetIL-15) designed to therapeutically enhance EV and 2) provides methods of reducing liver uptake of EVs, thereby increasing delivery to target sites, such as tumors.

Vaccines for HIV

The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

Ketamine Metabolites for the Treatment of Depression and Pain

The National Institute on Aging, Laboratory of Clinical Investigation, is seeking parties interested in collaborative research to co-develop ketamine metabolites for the treatment of different forms of depression and for alleviating pain.

Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase

Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

Software for Accurate Segmentation of Cell Nuclei in Breast Tissue

The Office of the Director, National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research (using the Cooperative Research and Development Agreement (CRADA) or Material Transfer Agreement (MTA) to further develop, evaluate, or commercialize the software for accurate segmentation of cell nuclei and FISH signals in tissue sections. Collaborators working in the field of quantitative and automated pathology may be interested.

Method and Device for Selectively Labeling RNA

The National Cancer Institute's Structure Biophysics Lab seeks partners interested in licensing or co-developing a technology to site-specifically label RNA.

Methods of Treating or Preventing Demyelation Using Thrombin Inhibitors

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (“NICHD”), seek CRADA partner or collaboration for development of agents to treat multiple sclerosis or other conditions associated with myelin remodeling by administering an agent that inhibits cleavage of Neurofascin 155 or Caspr1. The agent could be a thrombin inhibitor, an agent that inhibits thrombin expression, an anti-thrombin antibody that specifically inhibits thrombin mediated cleavage of Neurofascin 155, a mutated version or fragment of Neurofascin 155 or Caspr1, or antibodies to Neurofascin 155 or Caspr1.

Vaccine for BK Polyomavirus-associated Infections in Transplant Recipients

NCI researches identified a BK polyomavirus (BKV) virulent strain that causes chronic urinary tract infections, and the development of vaccine and therapeutic methods that would block BKV pathogenesis. The NCI Laboratory of Cellular Oncology, seek parties to license or co-develop this technology.

Griffithsin-Based Anti-viral Therapeutics with Improved Stability and Solubility

Scientists at the National Cancer Institute's Molecular Targets Laboratory have modified the Cnidarin-derived griffithsin compound to have greater storage time and stability. Griffithsin compounds are a class of highly potent proteins capable of blocking the HIV virus from penetrating T cells. The National Cancer Institute seeks parties interested in collaborative research to license or co-develop large-scale recombinant production of the compound.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Anti-Viral Compounds that Inhibit HIV Activity

The National Cancer Institute (NCI) Molecular Targets Laboratory is seeking parties interested in collaborative research to co-develop antiviral tropolone derivatives developed by systematic medicinal chemistry on the lead series.

Pages