You are here

Share:

Search Technologies

Showing 81-100 of 364 results found

Target for Anti-Tumor Immune Responses

The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy.

Treating JC Polyomavirus Infection and Associated Leukoencephalopathy

The National Cancer Institute seeks parties interested in collaborative research to co-develop or license methods of treating disorders related to polyomavirus, as well as vaccines for patients undergoing immunosuppressive treatment such as multiple sclerosis, rheumatoid arthritis, B cell cancers, and Crohn’s disease.

Improved Antibodies Against ERBB4/HER4

The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Neurobiology seeks parties interested in licensing or collaborative research to further evaluate or commercialize specific rabbit monoclonal antibodies generated against the ErbB4 receptor (also known as HER4) that have been validated for specificity using tissue sections and extracts from ErbB4 knockout mice.

Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis. NCI investigators created a G-protein coupled receptor GPR116 mutant mouse model and showed that GPR116 plays a previously unexpected, essential role in maintaining normal surfactant levels in the lung. The National Cancer Institute seeks partners interested in collaborative research to license surfactant modulating agents for the treatment of surfactant related lung disorders.

Assays for Measuring and Quantifying DNA Damage

The National Cancer Institute seeks partners interested in licensing or co-development of assays for determining the levels of gamma-H2AX/H2AX to measure and quantify DNA damage.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

Clinical Outcome Predictors for Mantle Cell Lymphoma

The invention is a novel methodology for predicting a mantle cell lymphoma (MCL) cancer patient’s survival prognosis. This information is important in helping determine the best course of treatment for the patient.

Genetic Assay for Transcription Errors: Methods to Monitor Treatments or Chemicals that Increase the Error Rate of RNA synthesis

Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.

Fatty Acid Derivatives and Their Use

Researchers at the National Institutes on Aging (NIA) seek research co-development or licensees for novel compounds and pharmaceutical formulations to treat autoimmune disorder and inflammation. Other potential indications for these compounds include pain, itching, and/or skin disorders.

Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy (CP)

Researchers at the National Institutes of Health Clinical Center (NIHCC) and Northern Arizona University (NAU) seek licensing and/or co-development research collaborations for a wearable, pediatric, robotic exoskeleton that facilitates knee extension during walking to provide motorized movement assistance and training through the gait cycle. The Robotic Exoskeleton is specifically designed for therapy of crouch gait in children with cerebral palsy (CP). The design is a customizable human-machine interface that allows an individualized assistance protocol to help preserve and enhance muscle strength and control. Early clinical results from this intervention appear promising for a condition having few effective long-term interventions.

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. The National Cancer Institute's Surgery Branch seeks interested parties to license or co-develop the use of T cell receptors (TCRs) cloned against the SSX-2 antigen for the treatment of cancer.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Pages