You are here

Share:

Search Technologies

Showing 1-20 of 56 results found

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Researchers at the National Cancer Institute (NCI) developed a multiplex assay to determine the efficacy of apoptosis-related drugs targeting the Bcl2 family of proteins or aid in the selection of cancer patients likely to respond. The NCI seeks partners for co-development or licensees for commercialization of novel immunoassays for determining or predicting patient response to cancer therapy.

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Researchers at the National Cancer Institute (NCI) have developed a gene-expression profiling-based molecular diagnostic assay to diagnose and classify primary mediastinal large B cell lymphoma (PMBCL) from diffuse large B cell lymphoma (DLBCL). The diagnosis can be done using routinely available formalin-fixed, paraffin-embedded (FFPE) biopsies. The NCI seeks licensees and/or co-development partners to commercialize this technology.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Researchers at the National Cancer Institute (NCI) identified a biomarker signature of viral infection that correlates with hepatocellular carcinoma (HCC) incidence in at-risk individuals. It has been validated in a longitudinal cohort to detect HCC with high sensitivity and specificity up to 7 years prior to clinical diagnosis. This viral exposure signature can be easily implemented into diagnostic assays for screening of HCC and is available for licensing and/or co-development opportunities.

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Scientists at the National Cancer Institute (NCI) have developed the Cytokine Signaling Analyzer (CytoSig), a software-based platform that provides both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. NCI seeks collaborators or licensees to advance the development of CytoSig for research, target discovery, or as a Clinical Decision Support System (CDSS).

Synthetic Lethality-mediated Precision Oncology via the Tumor Transcriptome

Scientists at the National Cancer Institute (NCI) have developed SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a computational precision-oncology framework harnessing genetic interactions to improve treatment options for cancer patients. NCI seeks collaborators or licensees to advance the development of this technology into precision diagnostics.

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

The National Eye Institute seeks research and co-development partners and/or licensees to: (1) advance the production and uses of the new RNA preparation method; (2) manufacture reagent kits for testing in patients with suspected COVID-19 and other DNA/RNA viruses, and (3) manufacture reagent kits for patient biomarker profiles and inherited disease diagnostics.

Time Efficient Multi-Pulsed Field Gradient (mPFG) MRI Without Concomitant Gradient Field Artifacts

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of diffusion tensor distribution imaging (DTD-MRI) in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Tamperless Tensor Elastography Imaging

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks research co-development partners and/or licensees for the development of tamperless tensor elastography imaging in assessing disease (e.g., cancer), normal and abnormal developmental processes, degeneration and trauma in the brain and other soft tissues, and other applications.

Detection of Novel Endocrine-Disrupting Chemicals in Water Supplies

Testing for biological activity of glucocorticoids and many other steroid endocrine-disrupting chemicals (EDCs) has not been previously performed. An automated, highly reproducible, and low cost assay detects biologically active steroidal EDCs and is suitable for wide application in testing water samples. The National Cancer Institute seeks partners for collaborative co-development research and/or licensing to move this technology into the public domain.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Somatic mutations can alter the sensitivity of tumors to T-cell mediated immunotherapy. Identifying genes that positively regulate the sensitivity of cancer cells to T-cell mediated clearance is key for effective treatment in cancer patients. Researchers at the National Cancer Institute (NCI) have identified a panel of genes which are useful in predicting a patient’s response to immunotherapy. NCI seeks partners to co-develop or license the technology toward commercialization.

Near-IR Light-Cleavable Antibody Conjugates and Conjugate Precursors

Researchers at the National Cancer Institute (NCI) developed novel groups of cyanine (Cy) based antibody-drug conjugate (ADC) chemical linkers that undergo photolytic cleavage upon irradiation with near-IR light. By using the fluorescent properties of the Cy linker to monitor localization of the ADC, and subsequent near-IR irradiation of cancerous tissue, drug release could be confined to the tumor microenvironment.

Dual-Function Protein ATIA for Diagnostics and Therapeutics of Glioblastoma

Investigators at the NCI discovered an Anti-TNF Induced Apoptosis (ATIA) protein, which protects cells against apoptosis.  ATIA is highly expressed in glioblastoma and astrocytomas and its inhibition results in increased cell sensitivity to TNF-related apoptosis-inducing ligand induced cell death.  The National Cancer Institute seeks parties interested in licensing or collaborative research to further develop, evaluate, or commercialize glioblastoma diagnostics and therapeutics.

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies. The National Cancer Institute seeks partners interested in licensing or collaborative research to co-develop a prognostic PCR based test for thymic malignancies.

Ratio Based Biomarkers for the Prediction of Cancer Survival

The NCI seeks licensees or co-development partners for this technology, which describes compositions, methods and kits for identifying, characterizing biomolecules expressed in a sample that are associated with the presence, the development, or progression of cancer.

Diagnostic Assays for the Detection of Thyroid Cancer

The Eunice Kennedy Shriver National Institute of Child and Human Development’s (NICHD) Pediatric Growth and Nutrition Branch seek partners to co-develop a diagnostic assay to detect thyroid cancer.

Pages