You are here

Share:

Search Technologies

Showing 1-13 of 13 results found

Human Research Information System (HuRIS)

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a Human Research Information System (HuRIS) software that automates all major functions of a clinical-research entity. The system is designed for commercial healthcare providers, community treatment centers, and clinical research facilities.

A Mobile Health Platform

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing or co-development of a mobile health technology that monitors and predicts a user’s psychological status in order to deliver an automated intervention when needed.

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

Subject Matter Expertise Reference System (SMERS)

The National Institute on Drug Abuse (NIDA) is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a search engine for PubMed and other information warehouses. As a Research Tool, patent protection is not being pursued for this technology.

Mobile Software for Substance Abuse Interventions and Behavioral Modification

Researchers at the National Institute on Drug Abuse (NIDA) seek licensing and/or co-development research collaborations to further develop, evaluate or commercialize the software, Mobile Personalized Assessment & Learning for Addiction Treatment and Behavioral Modification. NIDA researchers developed this software for use in treating substance use disorders (drugs, alcohol, smoking) that provides personalized feedback to users.

Atypical Inhibitors of Monoamine Transporters; Method of Making; and Use Thereof

The technology is a series of modafinil analogues that bind with moderate to high affinity to the dopamine (DA) transporter (DAT). Some compounds also have affinity for the serotonin (5-HT) transporter (SERT) and/or sigma-1 receptor. The compounds retain the desired dopamine transporter affinity with greater metabolic stability over previously described unsubstituted piperazine ring analogues. Importantly, these compounds have no predicted addictive liability. Also disclosed are methods for treating substance use disorders as well as other neuropsychiatric disorders such as ADHD, depression, narcolepsy, and cognitive impairment. Researchers at the National Institute on Drug Abuse (NIDA) seek licensing and/or co-development research collaborations for further development and commercialization of the compounds.

Mobile Interconnected Evaluation and Learning Software

The National Institute on Drug Abuse (NIDA) seeks licensing and/or co-development research collaborations for use of software for substance use disorders, behavior modification, and cancer patient care and pain management, etc. NIDA has developed software that permits real-time communication of patient-reported data and associated geolocation data. The software can be used in patient treatment or as a research tool for evaluating effectiveness of treatments.

Dopamine D3 Receptor Agonist Compounds, Methods of Preparation, Intermediates Thereof, and their Methods of Use

Scientists at the National Institute on Drug Abuse (NIDA) have developed novel dopamine D3 receptor (D3R) agonists with high affinity and selectivity. Two lead compounds, 53 and eutomer 53a, have demonstrated significantly higher D3R binding selectivity than reference compounds. Moreover, 53 and 53a showed metabolic stability in liver microsomes, which is favorable for the future use of these compounds as therapeutic agents for diseases related to dopamine system dysregulation such as Parkinson’s Disease and Restless Legs Syndrome. Researchers at NIDA seek licensing and/or co-development research collaborations for the use of these D3R agonists as molecular tools for the study of D3R physiology and as potential therapeutics to treat neurological and neuropsychiatric disorders.