Skip to main content
An official website of the United States government
Government Funding Lapse
Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Technology ID
TAB-4160

Virus-Like Particles That Can Deliver Proteins and RNA

E-Numbers
E-264-2011-0
Lead Inventors
Kaczmarczyk, Stanislaw
Co-Inventors
Chatterjee, Deb
Applications
Therapeutics
Therapeutic Areas
Oncology
Infectious Disease
Development Stages
Pre-clinical (in vivo)
Lead IC
NCI
ICs
Leidos

The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

Current methods of delivering proteins or RNA to mammalian cells are limited by a lack of target specificity and toxicity, among other shortcomings.  NCI researchers have created novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells.  The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells.  The present VLPs can optionally comprise inhibitory recombinant polynucleotides, such as microRNA, antisense RNA or small hairpin RNA, to down regulate or turn off expression of a particular gene within the target cell.  Alternatively, recombinant polynucleotides packaged within VLPs can comprise a gene encoding a therapeutic protein so as to enable expression of that protein within the target cell.   Specifically, VLPs of the invention are composed of an alphavirus replicon that contains a recombinant polynucleotide, a retroviral gag protein, and a fusogenic envelope glycoprotein.

 While the claimed VLPs have a variety of applications, therapeutic uses of the VLPs include directing antibody synthesis and converting cancer cells into antigen presenting cells. Additional applications include using VLPs to induce fast (approx. 3-4 hrs) and high levels of protein production in mammalian cells.

Competitive Advantages:

  • Obviates the need to use expensive antigen purification for proteins or antigens produced inside target cells
  • High level (~million copies per cell) of RNA production/synthesis within target cell
  • Fast expression (approx. 3-4 hrs compared to 1-2 days) following VLP introduction into target cells

Commercial Applications:

  • Delivery of microRNA and small hairpin RNA to reduce expression of targeted genes in a human cell
  • Delivery of coding RNA for robust expression in mammalian systems
  • Direct antibody production by in vivo injection of replicons (no antigen purification)
Licensing Contacts
Nguyen-Antczak, Lauren
lauren.nguyen-antczak@nih.gov