Skip to main content
An official website of the United States government
Government Funding Lapse
Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Technology ID
TAB-3997

Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells

E-Numbers
E-212-2015-0
Lead Inventors
Bharti, Kapil
Applications
Therapeutics
Therapeutic Areas
Ophthalmology
Development Stages
Pre-clinical (in vivo)
Lead IC
NEI
ICs
NEI

The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease. Retinal degenerative diseases linked to loss of RPE result in a substantial economic, social, and healthcare burden for individuals and governments worldwide.

Currently, no Food and Drug Administration (FDA) approved treatments exist for AMD. Importantly, AMD vision loss is linked to RPE cell atrophy; thus, transplant and replacement of the lost RPE with healthy and functional RPE cells might be a treatment for AMD and other retina diseases. Healthy functional RPE can be grown/differentiated from induced pluripotent stem cells. A graft of such RPE cells may potentially be implanted into the eye of AMD patients to restore vision or prevent vision loss.  However, methods for producing RPE cells for human therapy must be consistent, scalable and reliable. Generation and differentiation of clinical grade RPE under good laboratory practice (GLP) and good manufacturing practices (GMP) is critical for generating cells suitable for regulatory approval studies and for development of RPE cells for transplantation therapies. 

Researchers at the National Eye Institute (NEI),  and National Institute of Arthritis and Muscoskeletal and Skin Diseases (NIAMS) have developed a novel invention that includes a procedure/method to consistently produce clinical grade RPE cells from human induced pluripotent stem cells (iPSC). The RPE cells produced may be used for advancing transplantation therapy for AMD and other retinal degenerative diseases associated with the loss of RPE. 

Competitive Advantages:

  • Clinical-grade process 
  • RPE cells for therapeutics or modeling

Commercial Applications:

  • Producing RPE cells for commercial or research purposes
Licensing Contacts
Fenn, Edward (Tedd)
tedd.fenn@nih.gov