You are here

Share:

siRNA Delivery Using Hexameric Tetrahedral RNA Nanostructures for Gene Silencing

Summary
Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticles can contain twelve Dicer substrate RNA duplexes for gene silencing. The NCI seeks parties interested in co-development or licensing of these tetrahedral RNA nanoparticles.
NIH Reference Number
E-075-2018
Product Type
Keywords
  • RNA, Nanoparticle, RNAi, RNA Interference, siRNA, Gene Silencing, Shapiro
Collaboration Opportunity
This invention is available for licensing and co-development.
Contact
Description of Technology

RNA interference (RNAi) is a biological response to double-stranded RNA that regulates expression of protein-coding genes and is a natural mechanism for gene silencing. Delivery of short, interfering RNA (siRNA) leads to RNAi of the targeted genes. 

Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the University of California, Santa Barbara (UCSB), developed a tetrahedral-shaped RNA nanoparticle for the delivery of siRNA to activate RNAi. The tetrahedral RNA nanoparticle is comprised of four RNA nanorings as the “faces” of the tetrahedral scaffold. 

The tetrahedral RNA nanoparticles can contain up to twelve Dicer substrate RNA duplexes, enabling the simultaneous targeting of multiple genes with several siRNA copies. 

Potential Commercial Applications
  • Targeted therapeutic for cancer
  • Research tool to study cancer
  • Targeted therapeutic for RNA-based viruses
Competitive Advantages
  • Increased functional capacity of RNA nanoparticles
  • Can contain up to 12 targeting siRNAs while maintaining thermodynamic stability
  • Allows for substitution of several siRNAs with other functional moieties while still maintaining large number of targeting siRNAs
  • Shown to have superior cell uptake capabilities and silencing capacity compared to some other RNA-based nanoconstructs
  • Can be assembled by co-transcriptional folding or one-pot processes
Inventor(s)

Bruce Shapiro (NCI), Paul Zakrevsky (NCI), Luc Jaeger (UCSB)

Development Stage
Patent Status
  • U.S. Provisional: U.S. Provisional Patent Application Number 62/696,619, Filed 11 Jul 2018
Therapeutic Area
Updated
Friday, December 14, 2018