Skip to main content
An official website of the United States government
Government Funding Lapse
Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Technology ID
TAB-4166

Composite Gels and Methods of their Use in Tissue Repair, Drug Delivery, and as Implants

E-Numbers
E-014-2019-0
Lead Inventors
Horkay, Ferenc
Co-Inventors
Basser, Peter
Applications
Non-Medical Devices
Medical Devices
Therapeutic Areas
Dermatology
Development Stages
Prototype
Lead IC
NICHD
ICs
NICHD

Gel materials, particularly hydrogels, typically lose their mechanical strength and stiffness as they swell. This property  limits their use in both biological (e.g., cartilage and ECM repair) and non-biological (e.g., sealant) applications. Innovative materials in both medical and non-medical application areas are sorely needed.

Recent innovations in this space, from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), include self-reinforcing composite hydrogels. These composite materials comprise novel combinations of solvents, swellable crosslinked polymer particles, and crosslinked polymer networks or matrices, which confine them. Exemplary solvents include water and organic solvents, silicone fluids and oils and others known in the art. Exemplary swellable crosslinked microgel polymer particles could comprise hyaluronic acid (HA) or other proteoglycans, polyethylene glycol, dextran particles, a poly(acrylic acid), a poly(methacrylic acid), polystyrene sulfonate, polyvinylpyrrolidone (PVP), polyacrylamide, or combinations thereof. Exemplary confining polymer networks or matrices in which these microgel polymer particles are incorporated can include polyvinyl alcohol (PVA) and its copolymers (e.g., polyvinyl alcohol-polyvinyl acetate copolymer, polyvinyl alcohol – polyvinyl acetal copolymer, polyvinyl alcohol – polyvinyl butyral copolymer) and other matrices or networks such as cellulose derivatives (e.g., methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose). Tests of the innovative gels developed by NICHD scientists demonstrate that these gels have properties similar to, e.g., human cartilage – including load-bearing ability and demonstrating high self-reinforcement. The special properties of these gels also render them suitable for drug release to the intestines and other organs.

Researchers at NICHD welcome a wide variety of collaborative and licensing relationships. Possibilities include a cooperative research and development agreement (CRADA). The NICHD and NCI technology transfer center welcome non-exclusive or exclusive license agreements. They are eager to transfer rights in these technologies   to responsible commercial partners who will diligently move therapeutics and other applications towards commercialization.

Competitive Advantages:

  • Highly self-reinforcing as compared to traditional gel materials Wide variety of potential clinical and industrial applications
  • Fracture resistant, like rip-stop nylon

 

Commercial Applications:

  • Cartilage repair Intervertebral disc repair
  • Drug delivery vehicle
  • Breast implants and tissue expanders
  • Commercial or industrial sealants
  • Underwater (naval) or commercial sealant technology

 

Licensing Contacts
Girards, Richard
richard.girards@nih.gov