Skip to main content
An official website of the United States government
Government Funding Lapse
Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

Technology ID
TAB-4068

Conformational Restriction of Cyanine Fluorophores in Far-Red and Near-IR Range

E-Numbers
E-143-2017-0
Lead Inventors
Schnermann, Martin
Co-Inventors
Michie, Megan
Applications
Diagnostics
Therapeutic Areas
Oncology
Nephrology
Gastroenterology
Cardiology
Development Stages
Pre-clinical (in vivo)
Lead IC
NCI
ICs
NCI

Small molecule fluorescent probes are important tools in diagnostic medicine. Existing far-red and near-IR cyanine fluorophores (e.g. Cy5, Alexa 647, Cy7, ICG) are active in the far-red and near-range, but these agents suffer from modest quantum yields (brightness) which limit wide utility. It has been reported that the limited brightness of these fluorophores is due to an excited-state C-C rotation pathway.

The invention is directed to a new class of conformationally restricted cyanines that exhibit significantly improved quantum yield (3-4-fold increase in fluorescence quantum yield). These compounds are active in the long wavelength range (absorbance maxima = 661nm, emission maxima = 681nm). Additionally, these compounds are detectable at lower concentrations with concurrent improvements in signal to noise. While these compounds can be readily appended to antibodies and small-molecule based targeting motifs, these compounds are particularly useful for imaging procedures where photon count is limiting, e.g., FACS procedures, super resolution microscopy, and fluorescence guided surgery applications.

The invention is also directed to a generalized approach for synthesizing variants of the invention cyanine fluorophores prepared thus far.

Competitive Advantages:

  • Improved quantum yield (3-4-fold increase in fluorescent emission over normal Cy5-type dyes (Absorbance maxima = 661 nm, Emission maxima= 681 nm, fluorescence quantum yield = 0.70)   
  • Excellent recovery from NaBH4 reduction 
  • Improved photon output in single molecule localization microscopy

Commercial Applications:

  • Fluorescence guided surgery 
  • Tumor visualization 
  • In vivo imaging
  • Fluorescent marker of the bile duct and ureter during abdominal surgery
  • Diagnostic medicine
  • Super resolution microscopy
  • FACS and other microscopy procedures where photon count is limiting
Licensing Contacts
Nguyen-Antczak, Lauren
lauren.nguyen-antczak@nih.gov