Her2 Monoclonal Antibodies, Antibody Drug Conjugates as Cancer Therapeutics

Summary
The National Cancer Institute’s Laboratory of Experimental Immunology seeks partners interested in licensing or collaborative research to co-develop monoclonal antibodies and ADCs, and methods of making them.

NIH Reference Number
E-351-2013

Product Type
- Therapeutics

Keywords
- Her2 positive
- Her2-overexpression
- Her2
- antibody drug conjugate
- ADC
- Dimitrov

Collaboration Opportunity
This invention is available for licensing.

Contact
- Rose Freel
 NCI TTC
 rose.freel@nih.gov (link sends e-mail)

Description of Technology
Antibody drug conjugates (ADC) can demonstrate high efficacy as cancer therapeutics, however, much more can be done to improve their efficacy and safety profile. Site-specific antibody drug conjugation is a promising way to do this. Scientists at the NCI’s Laboratory of Experimental Immunology have identified a fully human monoclonal antibody, m860, that binds to cell surface-associated Her2 with affinity comparable to that of Trastuzumab (Herceptin) but to a different epitope. In addition, the scientist developed a site-specific glycan engineering method to conjugate the antibody to the
small molecule drug auristatin F. The ADC prepared though this site-specific approach shows very good stability, cell surface binding activity and also potent specific cell killing activity against Her2 positive cancer cells, including Trastuzumab resistant breast cancer cells. This ADC has the potential to be developed as a targeted therapeutic for Her2-overexpressing cancers and this site-specific strategy could be readily applied to develop ADCs targeting other cancers that express cell surface markers or other disease targets.

Potential Commercial Applications
- Therapeutic for the treatment of Her2 positive cancers.
- Method for producing safer and more effective ADCs.

Competitive Advantages
- Could be used in combination with Trastuzumab or for patients who have developed resistance to Trastuzumab treatment, since this antibody targets a different epitope.
- Site specific conjugation provides better efficacy and less side effects than ADCs produced using traditional strategies.
- Can be readily applied to develop ADCs targeting other cancers that express cell surface markers or other disease targets, such as HIV.

Inventor(s)
Dimiter S. Dimitrov (NCI), Zhongyu Zhu (NCI), Pradman K. Qasba (NCI), Boopathy Ramakrishnan (NCI)

Development Stage
- Pre-clinical (in vivo)

Patent Status
- **U.S. Patent Issued:** U.S. Patent Number 9738736, Filed 09 Jun 2014, Issued 22 Aug 2017

Therapeutic Area
- Cancer/Neoplasm

Updated
Friday, September 16, 2022

Source URL: https://techtransfer.cancer.gov/availabletechnologies/e-351-2013