Rapid Manufacture of Retroviral Vectors Encoding Tumor-Specific T Cell Receptors for Adoptive Cell Immunotherapy

Summary (1024-character limit)
Researchers at the National Cancer Institute (NCI) have developed a novel method enabling rapid, GMP-compliant manufacture of retroviral vectors encoding anti-tumor T cell receptors (TCRs). T cells engineered through the use of these vectors to express tumor-reactive TCRs will be useful in adoptive cell immunotherapy for the treatment of cancer. Researchers at the NCI seek licensing and/or co-development research collaborations for this invention.

NIH Reference Number
E-157-2017

Product Type
• Therapeutics

Keywords
• Adoptive Cell Therapy, ACT, Immunotherapy, Retroviral Vector, T Cell Receptor, TCR, T Cells, Rosenberg

Collaboration Opportunity
This invention is available for licensing and co-development.

Contact
• John D. Hewes
  NCI - National Cancer Institute
  240-276-5515
  John.Hewes@nih.gov

Description of Technology
Human cancers contain genetic mutations that are unique to each patient. Some of the mutated peptides are immunogenic, can be recognized by T cells, and may serve as therapeutic targets. However, there are technical barriers making it difficult to engineer tumor-specific T cells unique to each patient. Thus, there is a need for new methods of producing these T cells in sufficient quantities to provide patients with adoptive cell immunotherapy.

Researchers at the National Cancer Institute (NCI) have developed a method that enables the GMP manufacture of gammaretroviral vectors encoding tumor mutation-specific T Cell receptors (TCRs) using transient transfection-based vector production methods. This approach encompasses the production of a
fully validated 293GP master cell bank (MCB). The 293GP is a 293-based retroviral packaging cell line stably expressing the Moloney Murine Leukemia Virus gap-pol gene. This MCB has been biosafety tested to industry standards, including: testing for replication competent retrovirus (RCR), human viruses and other adventitious virus. This MCB will be used to produce a transient pMSGV1 gammaretrovirus encoding a TCR reactive to a patient-specific neoantigen. Vector supernatants will be manufactured for a single patient and used to transduce the patient’s autologous peripheral blood lymphocytes; thereby generating a cell therapy product for use in a single patient.

The NCI, Surgery Branch, is seeking statements of capability or interest from parties interested in licensing this invention and/or collaborative research to further develop, evaluate or commercialize this method of manufacturing vectors encoding cancer mutation-specific TCRs for adoptive cell immunotherapy.

**Potential Commercial Applications**
- Personalized cell therapy targeting tumor specific mutations using gene modified T cells
- High efficiency production of GMP-compliant viral vectors

**Competitive Advantages**
- Method for generating autologous high frequency (up to 90%) tumor mutation-specific T-Cells directed against mutations expressed by the patient’s tumor

**Inventor(s)**
Steven A Feldman (NCI), Steven A Rosenberg (NCI)

**Development Stage**
- Clinical

**Patent Status**
- **U.S. Provisional**: U.S. Provisional Patent Application Number 62/639,272, Filed 06 Mar 2018

**Related Technologies**
- E-233-2014 - T-Cell Therapy Against Patient-Specific Cancer Mutations

**Therapeutic Area**
- Cancer/Neoplasm