A RAPID METHOD OF ISOLATING NEOANTIGEN-SPECIFIC T CELL RECEPTOR SEQUENCES

SUMMARY (1024-CHARACTER LIMIT)
Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

NIH REFERENCE NUMBER
E-067-2017

PRODUCT TYPE
- Research Materials
- Therapeutics

KEYWORDS
- T-cell Receptors, TCR, Immunotherapy, Cancer, Single Cell, Tumor

COLLABORATION OPPORTUNITY
This invention is available for licensing and co-development.

CONTACT
- John D. Hewes
 NCI - National Cancer Institute

 240-276-5515

 John.Hewes@nih.gov

STATUS
Active

DESCRIPTION OF TECHNOLOGY
Tumors can develop unique genetic mutations which are specific to an individual patient. Some of these
mutations are immunogenic; giving rise to autologous T cells which are tumor-reactive. Once isolated and sequenced, these neoantigen-specific TCRs can form the basis of effective adoptive cell therapy cancer treatment regimens; however, current methods of isolation are inefficient. Moreover, the process is technically challenging due to TCR sequence diversity and the need to correctly pair the a and b chain of each receptor. Thus, there is an urgent need for more robust methods of identifying paired sequences of mutation-specific TCRs for cancer immunotherapy.

Researchers at the NCI have developed an efficient method for isolating the paired sequences of TCRs. Using single-cell methodology, next generation sequencing and custom bioinformatics software, the researchers can isolate full-length TCR α and β chain sequences from mutation-reactive T cells. These isolated sequences can facilitate adoptive cell therapy for cancer patients.

POTENTIAL COMMERCIAL APPLICATIONS
- Personalized immunotherapy to treat cancer patients
- Research tool to identify mutation-specific T-cell receptors

COMPETITIVE ADVANTAGES
- Broadly applicable to different types of malignant tumors
- Limited off-target effects
- Patient-specificity to improve efficacy of adoptive cell therapy
- Rapid and scalable method of isolating neoantigen-specific TCRs

INVENTOR(S)
Yong-Chen W. Lu (NCI), Zhili Zheng (NCI), Peter C. Fitzgerald (NCI), Steven A. Rosenberg (NCI)

DEVELOPMENT STAGE
- Pre-clinical (in vivo)

PATENT STATUS
- U.S. Provisional: U.S. Provisional Patent Application Number 62/479,398, Filed 31 Mar 2017

RELATED TECHNOLOGIES
- E-229-2014 - Engineered T Cells that Target Tumor-Specific Mutations
- E-233-2014 - T-Cell Therapy Against Patient-Specific Cancer Mutations

THERAPEUTIC AREA
- Cancer/Neoplasm