You are here

Share:

Search Technologies

Showing 1-9 of 9 results found

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy (CP)

Researchers at the National Institutes of Health Clinical Center (NIHCC) and Northern Arizona University (NAU) seek licensing and/or co-development research collaborations for a wearable, pediatric, robotic exoskeleton that facilitates knee extension during walking to provide motorized movement assistance and training through the gait cycle. The Robotic Exoskeleton is specifically designed for therapy of crouch gait in children with cerebral palsy (CP). The design is a customizable human-machine interface that allows an individualized assistance protocol to help preserve and enhance muscle strength and control. Early clinical results from this intervention appear promising for a condition having few effective long-term interventions.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

Microosmometer for the Study of a Wide Range of Biological, Macromolecular, Polymeric, Gel, or Other Samples

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have discovered that changes in the osmotic pressure of tissue or hydroscopic samples having a mass of less than about one microgram and that can exert a high osmotic pressure can be measured by this method. The NICHD seeks research and co-development or licensees for a method of measuring small physical changes in small quantities of materials.

Genetic Assay for Transcription Errors: Methods to Monitor Treatments or Chemicals that Increase the Error Rate of RNA synthesis

Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.

Devices for Improved Tissue Cryopreservation and Recovery

Researchers at the National Eye Institute (NEI), have developed a cryopreservation and cell recovery system designed specifically for the efficient cryopreservation, transportation and subsequent thawing of monolayers and tissues on a substrate. This closed cryopreservation/defrost system allows for sterility in addition to increased viability, recovery and safety of tissues that can be used for in vitro culture or surgical transplantation.

A peptide hydrogel for use in vascular anastomosis

Researchers at the National Cancer Institute (NCI), in collaboration with surgery specialists from Johns Hopkins University, developed hydrogel compositions and methods to suture blood vessels with hydrogels during microsurgery. The hydrogels particularly benefit surgeons in whole tissue transplant procedures. The NCI seeks licensing and/or co-development research collaborations for further development of this technology.