You are here

Share:

Search Technologies

Showing 1-6 of 6 results found

Nanoparticle Platform Using Bacterial Spore Coat Proteins

Engineered bacterial spores can provide many useful functions such as the treatment of infections, use as an adjuvant for the delivery of vaccines, and the enzymatic degradation of environmental pollutants. Researchers at the National Cancer Institute’s Laboratory of Molecular Biology have developed a novel, synthetic spore husk-encased lipid bilayer (SSHEL) particle that is uniquely suited for a variety of these functions. NCI seeks partners to license or co-develop this technology toward commercialization.

Method and Device for Selectively Labeling RNA

The National Cancer Institute's Structure Biophysics Lab seeks partners interested in licensing or co-developing a technology to site-specifically label RNA.

Module to Freeze and Store Frozen Tissue

Researchers at the National Cancer Institute (NCI) have developed an engineered storage unit for frozen tissue, that provides a permanent base on which to mount tissue frozen in OCT and an enclosure for storage. The unit provides for chain-of-custody labeling and acts as an insulating container to protect the specimen. Other elements include devices for freezing the tissue to the base, as well as a holder for the base to facilitate cryosectioning. Application of the storage system allows a frozen tissue specimen to be moved between storage and cryosectioning without loss of label, deformation of tissue, or thermal alterations.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including cell binding studies, immune cell labeling techniques, and radio-ligand bio-distribution studies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for manufacturing. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 1% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

Microosmometer for the Study of a Wide Range of Biological, Macromolecular, Polymeric, Gel, or Other Samples

Scientists at the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) have discovered that changes in the osmotic pressure of tissue or hydroscopic samples having a mass of less than about one microgram and that can exert a high osmotic pressure can be measured by this method. The NICHD seeks research and co-development or licensees for a method of measuring small physical changes in small quantities of materials.

A peptide hydrogel for use in vascular anastomosis

Researchers at the National Cancer Institute (NCI), in collaboration with surgery specialists from Johns Hopkins University, developed hydrogel compositions and methods to suture blood vessels with hydrogels during microsurgery. The hydrogels particularly benefit surgeons in whole tissue transplant procedures. The NCI seeks licensing and/or co-development research collaborations for further development of this technology.