You are here

Share:

Search Technologies

Showing 1-20 of 162 results found

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Inventors at the National Cancer Institute (NCI) have developed chimeric antigen receptors (CARs) that target two B cell surface antigens, CD19 and CD22, improving treatment of B-cell malignancies, such as acute lymphoblastic leukemia (ALL). NCI is actively seeking parties interested in licensing this invention to commercialize the bicistronic CAR construct targeting CD19 and CD22 for immunotherapy.

Methods of Producing T-cell Populations Using P38 MAPK Inhibitors

Researchers at the National Cancer Institute (NCI) developed a method of producing larger populations of minimally-differentiated, persistent T-cells, which is critical for successful treatments, using p38 mitogen-activated protein kinase (MAPK) inhibitors. NCI seeks licensing and/or co-development research collaborations to further develop, evaluate, and/or commercialize this new method.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Researchers at the National Institutes of Health identified a collection of TCRs that exclusively recognize the common hotspot driver mutations in KRAS antigen, expressed by a variety of epithelial cancers, including pancreatic, colorectal and lung cancer. The mutated KRAS variants are recognized by the TCRs in the context of specific Class I/Class II HLA alleles. These TCRs can be used for a variety of experimental therapeutic, diagnostic and research applications.

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology seeks parties interested in licensing or collaborative research to co-develop therapeutics targeting vasodialation.

Oligonucleotide Production Process

This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.

RNA/DNA Nanoparticles as Cancer Therapeutics

The technology is directed to the use of single-stranded RNA overhangs or toeholds of varying lengths (< 12 nucleotides) contained in nucleic acid-based nanoparticles which trigger the association of these nanoparticles and activates multiple functionalities such as gene silencing and/or cell-specific targeting. The use of RNA toeholds is superior to that of DNA toeholds in that it allows for smaller nanoparticles (fewer nucleotides for the toeholds) resulting in greater chemical stability, less immunogenic and higher yield of production. The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for use of RNA overhangs or toeholds in nucleic acid nanoparticles.

T-cell Receptors (TCRs) Specific for p53 Mutants

National Cancer Institute (NCI) researchers have isolated T-cell receptors (TCRs) reactive to the highly prevalent p53-Y220C and p53-R273C mutants. These TCRs can be used for a variety of therapeutic, diagnostic and research applications. NCI seeks licensing and/or co-development research collaborations for TCRs that recognize p53-Y220C and p53- R273C mutations, and methods for identifying p53 mutation-reactive T cell receptors.

Leucine Zipper-bearing Kinase (LZK) -Targeting Degraders and Methods of Use

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for Leucine Zipper-bearing Kinase (LZK) -targeting proteolysis-targeting chimeras (PROTACs) as a therapeutic for treating head and neck, lung and ovarian squamous cell carcinoma, as well as small cell lung cancers which over-express LZK.

T-Cell Therapy Against Patient-Specific Cancer Mutations

Scientists at the National Cancer Institute's Surgery Branch developed a method to identify T cells that specifically recognize immunogenic mutations expressed only by cancer cells. The NCI seeks parties interested in collaborative research to co-develop or license T-cell therapy against cancer mutations.

Use of the TP5 Peptide for the Treatment of Cancer

Increased cyclin-dependent kinase 5 (CDK5) activity has recently emerged as a contributor to cancer progression. Researchers at the National Cancer Institute (NCI) and at the National Institute of Neurological Disorders and Stroke (NINDS) have shown that TP5, a small peptide inhibitor of CDK5 modified to facilitate passage through the blood brain barrier (BBB), has potential therapeutic benefit in glioblastoma (GBM) and colorectal carcinoma (CRC). NCI is seeking parties interested in co-developing and/or licensing TP5 for its use in the treatment of cancers with aberrant CDK5 expression as a mono-therapy or in an adjuvant setting with current standard-of-care.

Synthetic lipopeptide inhibitors of RAS oncoproteins

It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

Use of Acetalax for Treatment of Triple Negative Breast Cancer

The National Cancer Institute (NCI) seeks research co-development and/or potential licensees for a potential novel treatment for triple-negative breast cancer (TNBC) with acetalax (oxyphenisatin acetate). Acetalax is a previously FDA approved drug that has been used as a topical laxative but is being repurposed here as an onco-therapy because of its cytotoxic effects on a number of TNBC and other cancer cell lines.

Platform to Enhance Anti-Tumor Immunity

There is a marked increase in immunosuppressive myeloid progenitors and myeloid cells in tumors and at metastatic tissue sites, rendering these types of cells useful in cancer therapeutics, especially after genetic modifications that improve their anti-tumor properties further. The National Cancer Institute (NCI) seeks research co-development or licensing partners to further develop genetically engineered myeloid cells (GEMys) for use in cancer immunotherapy.

Angiogenesis-Based Cancer Therapeutic

The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Researchers at the National Cancer Institute (NCI) developed several high-affinity monoclonal antibodies to treat Fibroblast Growth Factor Receptor 4 (FGFR4)-related diseases including rhabdomyosarcoma and cancers of the liver, lung, pancreas, ovary and prostate. These antibodies have been used to generate antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs), which are capable of specifically targeting and killing diseased cells. NCI seeks co-development opportunities or licensees for this technology.

Pages