You are here

Share:

Search Technologies

Showing 1-20 of 121 results found

T Cell Receptor Targeting CD22 for the Treatment of Lymphomas and Leukemias

The National Cancer Institute (NCI) seeks licensees and/or collaborators for a T-cell receptor (TCR) that specifically targets CD22 in the context of Human Leukocyte Antigen (HLA)-A*02:01 in B-lymphoid malignancies such as non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia. The TCR is being developed as a cellular immunotherapy for the treatment of lymphomas and leukemias.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Chimeric antigen receptor (CAR) T cells that specifically target Glypican 2 (GPC2) are strong therapeutic candidates for patients with neuroblastoma and other GPC2-expressing cancers. The inventors at the National Cancer Institute (NCI) have developed a potent anti-GPC2 (CT3) CAR containing CD28 hinge and transmembrane domains (CT3.28H.BBζ) that is available for licensing and co-development.

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a collection of T-cell receptors (TCRs) that specifically target CDKN2A mutations. CDKN2A mutations are present in a myriad of cancers. Therefore, these TCRs may be used for engineering TCR-based therapies with therapeutic potential for a broad cancer patient population.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

The NCI seeks parties interested in research co-development and/or licensing of TCRs targeting the BRAF V600E mutation. These TCRs are HLA-A*0301 restricted. The BRAF V600E mutation is common among cancer patients, giving the TCRs broad therapeutic potential in immunotherapy against multiple cancers.

PIM-Targeted PROTACs

The National Cancer Institute (NCI) seeks research co-development partners and/or licensees for a series of PIM Kinase targeting PROTACS.

IgG4 Hinge Containing Nanobody-based CARs Targeting GPC3 for Treating Liver Cancer

Scientists at the National Cancer Institute (NCI) developed a potent chimeric antigen receptor (CAR) targeting glypican-3 (GPC3). GPC3 is a cell surface proteoglycan preferentially expressed on Hepatocellular Carcinoma (HCC). The specific HN3 nanobody-IgG4H-CD28TM CAR included in this invention was much more potent both in in vitro cell models and in vivo mouse models. The NCI seeks licensing and/or co-development research collaborations for further development of the anti-GPC3 CAR to treat liver cancer.

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Researchers at the National Cancer Institute (NCI) developed improved monospecific and bicistronic chimeric antigen receptors (CARs) targeting CD19 and CD20. Importantly, CD19 and CD20 are highly expressed in diffuse large B-cell lymphoma, acute lymphoblastic leukemia and other B-cell lymphomas. These improved CARs can be useful in treating these diseases. NCI is seeking parties interested in the co-development or licensing of this invention for immunotherapy.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

National Cancer Institute (NCI) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seek licensees for a technology involving the preparation and use of personalized tumor vaccines for cancer immunotherapy employing a therapeutic strategy called MBTA. MBTA consists of vaccinations with irradiated tumor cells pulsed with phagocytic agonists (Mannan-BAM, a polysaccharide derivative of mannan), TLR (Toll-like receptor) ligands, and agonistic Anti-CD40-monoclonal antibody.

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research co-development partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.

Pages