You are here

Share:

Search Technologies

Showing 61-80 of 219 results found

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

There remains a need for effective immunotherapies to treat solid tumors as well as hematological malignancies. Researchers at the National Cancer Institute (NCI) have designed novel chimeric adaptor proteins (CAPs) consisting of signaling molecules downstream of the T cell receptor (TCR) for use in T cell-mediated immunotherapy. NCI is seeking parties interested in licensing and/or co-developing CAPs that can be used in immunotherapy for treating cancer, including both hematological and solid malignancies.

Surgical Tool for Sub-retinal Tissue Implantation

Researchers at the National Eye Institute (NEI) developed a surgical tool to place tissue into position in the retina. The NEI seeks co-development or licensing to commercialize a prototype already in pre-manufacturing. Alternative uses will be considered.

Tissue Clamp for Repeated Opening and Closure of Incisions/Wounds

This surgical clamp device is particularly useful for intraocular surgeries requiring incision in the sclera. The device provides ease of use for repeated opening and closure of an incision or wound for entry of instruments into the eye. It maintains precise alignment of the wound margins, reducing loss of intraocular fluid and pressure. The NEI seeks licensees or collaborative co-development of this invention so that it can be commercialized.

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Researchers at the National Cancer Institute (NCI) seek licensing and/or co-development research collaborations for peptide-based virus-like nanoparticles that are fully synthetic and capable of delivering cytotoxic, radioactive, and imaging agents. The researchers are interested in commercial partners to conduct pre-clinical and pre-IND studies.

Efficient Cell-Free Production of Papillomavirus Gene Transfer Vectors

Researchers at the National Cancer Institute (NCI) developed cell free methods for efficiently producing high titer, papillomavirus virus-based gene transfer vectors. These vectors can potentially be used for vaccines and/or cancer therapeutic applications. NCI seeks licensing and/or co-development research collaborations for further development of these vectors.

Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1

The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

Polypeptides for Stimulation of Immune Response (Adjuvants)

Researchers at the National Cancer Institute, Laboratory of Molecular Immunoregulation developed compositions and methods for using HMGN and its derivatives as immunoadjuvants with microbial or tumor antigens.The National Cancer Institute, Laboratory of Molecular Immunoregulation seeks parties interested in licensing or collaborative research to co-develop polypeptides or antagonists for immune response regulation.

Synthetic lipopeptide inhibitors of RAS oncoproteins

It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

Topical Antibiotic for Faster Wound Healing

Currently available topical antibiotic formulations effectively eliminate bacteria at a wound site. Eliminating bacteria in the wound also eliminates the molecular signals present in bacterial DNA that stimulate the immune system's wound healing processes. Without these signals, the rate of wound healing is diminished.  The National Cancer Institute Laboratory of Experimental Immunology seeks parties interested in licensing a topical antibiotic formulation to accelerate wound healing.

Diagnostic Marker for Improving Treatment Outcomes of Hepatitis C

NCI Researchers have discovered Interferon-lambda 4 (IFNL4), a protein found through analysis of genomic data. Preliminary studies indicate that this protein may play a role in the clearance of HCV and may be a new target for diagnosing and treating HCV infection. The National Cancer Institute (NCI) Division of Cancer Epidemiology and Genetics (DCEG) Immunoepidemiology Branch is seeking statements of capability or interest from parties interested in in-licensing or collaborative research to further co-develop a gene-based diagnostic for Hepatitis C virus (HepC, HCV).

Pages